
Network Manager IP Edition
Version 3 Release 9

Perl API Guide

SC27-2769-01

���

Network Manager IP Edition
Version 3 Release 9

Perl API Guide

SC27-2769-01

���

Note
Before using this information and the product it supports, read the information in“Notices” on page 179.

Edition notice

This edition applies to version 3 release 9 of IBM Tivoli Network Manager IP Edition (product number 5724-S45)
and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2006, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this publication v
Intended audience v
What this publication contains v
Publications vi
Accessibility ix
Tivoli technical training. x
Support information x
Conventions used in this publication x

Chapter 1. Overview of the Perl API . . . 1
RIV module overview 1

RIV::Agent module overview 3
RIV::App module overview 7
RIV::OQL module overview 7
RIV::Param module overview 8
RIV::Record module overview 10
RIV::RecordCache module overview 11
RIV::SnmpAccess module overview 12

NCP modules overview 13
NCP::DBI_Factory module overview 14
NCP::Domain module overview 15

Synchronization with message broker. 16
Installing the Perl API 16
Perl builds. 17
Obtaining SNMP information from a network
device 17
Perl API modules reference page syntax 18

Chapter 2. Writing discovery agents . . 19
Before you write a discovery agent 19
Writing a discovery agent 20
Example discovery agents 24

Discovery agent skeleton 24
Network entity discovery agent example . . . 26
IP routing discovery agent example 26

Prototype agent definition file template 31
Using threads in discovery agents 33

Discovery agent threads example 33
Default number of threads 34

Chapter 3. Accessing component
databases 35
Object Query Language 35
Differences between OQL and Structured Query
Language 35
Actions that can be performed on component
databases 36
Example Perl scripts that operate on component
databases 37

The oql_example.pl example script 37
OQL example script 39

Chapter 4. Performing SNMP queries 41

Using get methods to obtain SNMP information
from a device. 41
Making synchronous and asynchronous SNMP get
requests 42
Example SNMP GET access script 42

Declare Perl API modules and variables 42
Create and initialize a RIV::Param object. . . . 43
Create and initialize a RIV::App object 44
Create and initialize RIV::SnmpAccess object . . 44
Check the device IP address and node name . . 45
Determine which SNMP GET requests to run . . 46
Perform asynchronous SNMP GET requests . . 46
Perform synchronous SNMP GET requests . . . 47
Print the SNMP varops 48

Chapter 5. Writing and integrating Perl
applications with third-party products . 49
Listener applications 49
Example Listener script 50

Declare Perl API modules and variables for
Listener 50
Create and initialize a RIV::Param object for
Listener 50
Create and initialize a RIV::App object for
Listener 50
Bind the RIV::App object to the message broker
subject for Listener 51
Write database records to a log file 51
Send database records to different applications 52

Appendix A. RIV Modules Reference . . 53
RIV module reference 53

RIV module synopsis 53
AddSubject 54
AddTimer 55
DebugLevel 56
DecryptPassword 56
EncryptPassword 57
Latency. 57
MessageLevel. 58
PostInput 59
PublishMessage 59
PublishMessage 60
RetryLimit. 61
RIV::GetInput. 62
RIV::GetResult 63
RIV::InputFilter 65
RIV::InputQueueLength 66
RIV::IsIpNotLoopBackOrMulticast 66
RIV::IsIpValid. 67
RIV::IsIpv4Valid 68
RIV::IsIpv6Valid 68
RIV::ReadDir 69
RIV::RivDebug 70
RIV::RivError 70

© Copyright IBM Corp. 2006, 2012 iii

RIV::RivMessage. 71
RIV::Agent module reference 71

RIV::Agent module synopsis 72
RIV::Agent Constructor 73
GetDNSAllIpAddrs. 74
GetDNSAllNames 74
GetDNSFirstIpAddr 75
GetDNSFirstName 76
GetIpArp 77
GetMacArp 77
GetMultTelnet 78
GetPingIP 79
GetPingList 80
GetPingSubnet 80
GetTelnet 81
GetTelnetCols. 82
GetTraceRoute 83
LockThreads 83
PingIP 84
PingList 85
PingSubnet 85
SendNEToDisco 86
SendNEToNextPhase 87
SnmpGet 91
SnmpGetBulk. 92
SnmpGetNext 93
UnLockThreads 94

RIV::App module reference 94
RIV::App module synopsis 94
RIV::App Constructor 95

RIV::OQL module reference 96
RIV::OQL module synopsis 96
RIV::OQL Constructor 97
CreateDB 98
CreateTable 98
Delete 99
Insert 100
Print 102
Select 102
Send 104
Update 104

RIV::Param module reference 106
RIV::Param module synopsis 106
RIV::Param Constructor 106
CommandName 110
DomainName 111
Usage 112

RIV::Record module reference 113
RIV::Record module synopsis 113
RIV::Record Constructor 113
AddLocalNeighbour 114
AddLocalNeighbourTag 115
AddRemoteNeighbour 115
AddRemoteNeighbourTag 116
GetLocalNeighbours 117
GetRemoteNeighbours 117
Print 118

RIV::RecordCache module reference 118

RIV::RecordCache module synopsis 118
RIV::RecordCache Constructor 119
CacheRecord 120
GetRecord 120
GetRecords 121

RIV::SnmpAccess module reference 122
RIV::SnmpAccess module synopsis 122
RIV::SnmpAccess Constructor 123
ASN1ToOid 123
AsyncSnmpGet 124
AsyncSnmpGetBulk 125
AsyncSnmpGetNext 127
GetMibHash. 128
MaxAsyncConcurrent 128
OidToASN1 129
SnmpGet 129
SnmpGetBulk 130
SnmpGetNext 131
SplitOidAndIndex 132

Appendix B. NCP Modules Reference 135
NCP::DBI_Factory module reference 135

NCP::DBI_Factory module synopsis 135
createDbHandle 137
describeTable 142
execute_insert_auto_inc 144
extractCmdLineOptions 145
extractHashRefOptions 147
insert_auto_inc_row 149
insert_row 150
prepare_insert_auto_inc 152
schema 153
setLogHandle 154
setLogLevel 155
tables 156
timeStamp 158
toUpper 159

NCP::Domain Reference 161
NCP::Domain module synopsis 161
NCP::Domain Constructor 162
clone 164
create 164
drop 166
id 168
name 169
setLogHandle 171
setLogLevel 172

Appendix C. Network Manager
glossary 175

Notices 179
Trademarks 181

Index 183

iv IBM Tivoli Network Manager IP Edition: Perl API Guide

About this publication

IBM Tivoli Network Manager IP Edition provides detailed network discovery,
device monitoring, topology visualization, and root cause analysis (RCA)
capabilities. Network Manager can be extensively customized and configured to
manage different networks. Network Manager also provides extensive reporting
features, and integration with other IBM products, such as IBM Tivoli Application
Dependency Discovery Manager, IBM Tivoli Business Service Manager and IBM
Systems Director.

The IBM Tivoli Network Manager IP Edition Perl API Guide describes the Perl API
used by third-party developers and technical services personnel to create discovery
agents and other client/server applications. These applications can perform such
tasks as accessing and modifying records in Network Manager IP Edition
databases, and retrieving SNMP information from a network device. This
publication is for advanced users who need to customize the operation of Network
Manager IP Edition.

Intended audience
This publication is intended for third-party developers and technical services
personnel who want to use the Perl API to create discovery agents and other
client/server applications.

This publication assumes that you understand how to program in Perl and that
you are familiar with IBM Tivoli Network Manager IP Edition.

IBM Tivoli Network Manager IP Edition works in conjunction with IBM Tivoli
Netcool/OMNIbus; this publication assumes that you understand how Tivoli
Netcool/OMNIbus works. For more information on Tivoli Netcool/OMNIbus, see
the publications described in “Publications” on page vi.

What this publication contains

This publication contains the following sections:
v Chapter 1, “Overview of the Perl API,” on page 1

Provides an overview and functional descriptions of all the modules that the
Perl API provides.

v Chapter 2, “Writing discovery agents,” on page 19
Describes how to write discovery agents using the RIV::Agent and RIV::Record
modules. Use the example discovery agent scripts as models for writing your
own custom discovery agents.

v Chapter 3, “Accessing component databases,” on page 35
Describes how to access and perform actions on Network Manager IP Edition
databases using the RIV::OQL module. Use the example script as a model for
writing your own scripts to access and perform actions on the databases.

v Chapter 4, “Performing SNMP queries,” on page 41
Describes how to retrieve SNMP information from a network device using the
RIV::SnmpAccess module. Use the example script as a model for writing your
own scripts to retrieve SNMP information from a network device.

© Copyright IBM Corp. 2006, 2012 v

v Chapter 5, “Writing and integrating Perl applications with third-party products,”
on page 49
Describes how to integrate a third party product using the RIV, RIV::Param, and
RIV::App modules to interface with Network Manager IP Edition. A sample
listener script is provided as a model for writing listener applications.

v Appendix A, “RIV Modules Reference,” on page 53
Provides reference (man) pages for the functions, variables, constants, methods,
and virtual methods that the RIV Perl modules provide.

v Appendix B, “NCP Modules Reference,” on page 135
Provides reference (man) pages for the methods that the NCP Perl modules
provide.

v Appendix C, “Network Manager glossary,” on page 175
Provides terminology relevant to the Network Manager product.

Publications
This section lists publications in the Network Manager library and related
documents. The section also describes how to access Tivoli publications online and
how to order Tivoli publications.

Your Network Manager library

The following documents are available in the Network Manager library:
v IBM Tivoli Network Manager IP Edition Release Notes, GI11-9354-00

Gives important and late-breaking information about IBM Tivoli Network
Manager IP Edition. This publication is for deployers and administrators, and
should be read first.

v IBM Tivoli Network Manager Getting Started Guide, GI11-9353-00
Describes how to set up IBM Tivoli Network Manager IP Edition after you have
installed the product. This guide describes how to start the product, make sure it
is running correctly, and discover the network. Getting a good network
discovery is central to using Network Manager IP Edition successfully. This
guide describes how to configure and monitor a first discovery, verify the results
of the discovery, configure a production discovery, and how to keep the network
topology up to date. Once you have an up-to-date network topology, this guide
describes how to make the network topology available to Network Operators,
and how to monitor the network. The essential tasks are covered in this short
guide, with references to the more detailed, optional, or advanced tasks and
reference material in the rest of the documentation set.

v IBM Tivoli Network Manager IP Edition Product Overview, GC27-2759-00
Gives an overview of IBM Tivoli Network Manager IP Edition. It describes the
product architecture, components and functionality. This publication is for
anyone interested in IBM Tivoli Network Manager IP Edition.

v IBM Tivoli Network Manager IP Edition Installation and Configuration Guide,
SC27-2760-00
Describes how to install IBM Tivoli Network Manager IP Edition. It also
describes necessary and optional post-installation configuration tasks. This
publication is for administrators who need to install and set up IBM Tivoli
Network Manager IP Edition.

v IBM Tivoli Network Manager IP Edition Administration Guide, SC27-2761-00
Describes administration tasks for IBM Tivoli Network Manager IP Edition, such
as how to administer processes, query databases and start and stop the product.

vi IBM Tivoli Network Manager IP Edition: Perl API Guide

This publication is for administrators who are responsible for the maintenance
and availability of IBM Tivoli Network Manager IP Edition.

v IBM Tivoli Network Manager IP Edition Discovery Guide, SC27-2762-00
Describes how to use IBM Tivoli Network Manager IP Edition to discover your
network. This publication is for administrators who are responsible for
configuring and running network discovery.

v IBM Tivoli Network Manager IP Edition Event Management Guide, SC27-2763-00
Describes how to use IBM Tivoli Network Manager IP Edition to poll network
devices, to configure the enrichment of events from network devices, and to
manage plug-ins to the Tivoli Netcool/OMNIbus Event Gateway, including
configuration of the RCA plug-in for root-cause analysis purposes. This
publication is for administrators who are responsible for configuring and
running network polling, event enrichment, root-cause analysis, and Event
Gateway plug-ins.

v IBM Tivoli Network Manager IP Edition Network Troubleshooting Guide,
GC27-2765-00
Describes how to use IBM Tivoli Network Manager IP Edition to troubleshoot
network problems identified by the product. This publication is for network
operators who are responsible for identifying or resolving network problems.

v IBM Tivoli Network Manager IP Edition Network Visualization Setup Guide,
SC27-2764-00
Describes how to configure the IBM Tivoli Network Manager IP Edition network
visualization tools to give your network operators a customized working
environment. This publication is for product administrators or team leaders who
are responsible for facilitating the work of network operators.

v IBM Tivoli Network Manager IP Edition Management Database Reference,
SC27-2767-00
Describes the schemas of the component databases in IBM Tivoli Network
Manager IP Edition. This publication is for advanced users who need to query
the component databases directly.

v IBM Tivoli Network Manager IP Edition Topology Database Reference, SC27-2766-00
Describes the schemas of the database used for storing topology data in IBM
Tivoli Network Manager IP Edition. This publication is for advanced users who
need to query the topology database directly.

v IBM Tivoli Network Manager IP Edition Language Reference, SC27-2768-00
Describes the system languages used by IBM Tivoli Network Manager IP
Edition, such as the Stitcher language, and the Object Query Language. This
publication is for advanced users who need to customize the operation of IBM
Tivoli Network Manager IP Edition.

v IBM Tivoli Network Manager IP Edition Perl API Guide, SC27-2769-00
Describes the Perl modules that allow developers to write custom applications
that interact with the IBM Tivoli Network Manager IP Edition. Examples of
custom applications that developers can write include Polling and Discovery
Agents. This publication is for advanced Perl developers who need to write such
custom applications.

v IBM Tivoli Monitoring for Tivoli Network Manager IP User's Guide, SC27-2770-00
Provides information about installing and using IBM Tivoli Monitoring for IBM
Tivoli Network Manager IP Edition. This publication is for system
administrators who install and use IBM Tivoli Monitoring for IBM Tivoli
Network Manager IP Edition to monitor and manage IBM Tivoli Network
Manager IP Edition resources.

About this publication vii

Prerequisite publications

To use the information in this publication effectively, you must have some
prerequisite knowledge, which you can obtain from the following publications:
v IBM Tivoli Netcool/OMNIbus Installation and Deployment Guide, SC23-9680

Includes installation and upgrade procedures for Tivoli Netcool/OMNIbus, and
describes how to configure security and component communications. The
publication also includes examples of Tivoli Netcool/OMNIbus architectures and
describes how to implement them.

v IBM Tivoli Netcool/OMNIbus User's Guide, SC23-9683
Provides an overview of the desktop tools and describes the operator tasks
related to event management using these tools.

v IBM Tivoli Netcool/OMNIbus Administration Guide, SC23-9681
Describes how to perform administrative tasks using the Tivoli
Netcool/OMNIbus Administrator GUI, command-line tools, and process control.
The publication also contains descriptions and examples of ObjectServer SQL
syntax and automations.

v IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide, SC23-9684
Contains introductory and reference information about probes and gateways,
including probe rules file syntax and gateway commands.

v IBM Tivoli Netcool/OMNIbus Web GUI Administration and User's Guide SC23-9682
Describes how to perform administrative and event visualization tasks using the
Tivoli Netcool/OMNIbus Web GUI.

Accessing terminology online

The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/software/globalization/terminology

Accessing publications online

IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Information Center Web
site at:

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File > Print window that allows your PDF reading application to print
letter-sized pages on your local paper.

Ordering publications

You can order many Tivoli publications online at the following Web site:

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

viii IBM Tivoli Network Manager IP Edition: Perl API Guide

http://www.ibm.com/software/globalization/terminology
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to the following Web site:

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
2. Select your country from the list and click Go. The Welcome to the IBM

Publications Center page is displayed for your country.
3. On the left side of the page, click About this site to see an information page

that includes the telephone number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

Accessibility features

The following list includes the major accessibility features in Network Manager:
v The console-based installer supports keyboard-only operation.
v The console-based installer supports screen reader use.
v Network Manager provides the following features suitable for low vision users:

– All non-text content used in the GUI has associated alternative text.
– Low-vision users can adjust the system display settings, including high

contrast mode, and can control the font sizes using the browser settings.
– Color is not used as the only visual means of conveying information,

indicating an action, prompting a response, or distinguishing a visual
element.

v Network Manager provides the following features suitable for photosensitive
epileptic users:
– Web pages do not contain anything that flashes more than two times in any

one second period.

The Network Manager Information Center, and its related publications, are
accessibility-enabled. The accessibility features of the information center are
described in Accessibility and keyboard shortcuts in the information center.

Extra steps to configure Internet Explorer for accessibility

If you are using Internet Explorer as your web browser, you might need to
perform extra configuration steps to enable accessibility features.

To enable high contrast mode, complete the following steps:
1. Click Tools > Internet Options > Accessibility.
2. Select all the check boxes in the Formatting section.

If clicking View > Text Size > Largest does not increase the font size, click Ctrl +
and Ctrl -.

IBM® and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility.

About this publication ix

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.help.ic.doc/info_accessibility.html
http://www.ibm.com/able

Tivoli® technical training

For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site:

http://www.ibm.com/software/tivoli/education

Support information
If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at http://www.ibm.com/software/
support/probsub.html and follow the instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability
workbench that helps you resolve questions and problems with IBM
software products. The ISA provides quick access to support-related
information and serviceability tools for problem determination. To install
the ISA software, go to http://www.ibm.com/software/support/isa

Conventions used in this publication
This publication uses several conventions for special terms and actions and
operating system-dependent commands and paths.

Typeface conventions

This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip: and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs)
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples

x IBM Tivoli Network Manager IP Edition: Perl API Guide

http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa

v File names, programming keywords, and other elements that are difficult
to distinguish from surrounding text

v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths

This publication uses environment variables without platform-specific prefixes and
suffixes, unless the command applies only to specific platforms. For example, the
directory where the Network Manager core components are installed is represented
as NCHOME.

When using the Windows command line, preface and suffix environment variables
with the percentage sign %, and replace each forward slash (/) with a backslash (\)
in directory paths. For example, on Windows systems, NCHOME is %NCHOME%.

On UNIX systems, preface environment variables with the dollar sign $. For
example, on UNIX, NCHOME is $NCHOME.

The names of environment variables are not always the same in the Windows and
UNIX environments. For example, %TEMP% in Windows environments is
equivalent to $TMPDIR in UNIX environments. If you are using the bash shell on
a Windows system, you can use the UNIX conventions.

About this publication xi

xii IBM Tivoli Network Manager IP Edition: Perl API Guide

Chapter 1. Overview of the Perl API

The Perl API provides developers with the functionality to write discovery agents
and other client/server applications. These applications can perform such tasks as
accessing and modifying records in Network Manager databases, and retrieving
SNMP information from a network device. Developers can also integrate
third-party products using the Perl API as a tool to interface with Network
Manager.

RIV module overview
The RIV module provides a variable, functions, and virtual methods that the Perl
API application modules — RIV::Agent and RIV::App — use.

Perl API modules used with the RIV module

The following table identifies and briefly describes the Perl API modules used with
the RIV module:

Perl API Module Description

RIV::Agent Provides an interface for implementing
Network Manager discovery agents.

RIV::App Provides an interface for implementing other
Network Manager client/server applications.

RIV::OQL Provides an interface to communicate and
perform operations on internal Network
Manager databases.

RIV::Param Provides an interface for parsing standard
and Network Manager application-specific
command line arguments.

RIV::Record Provides a data structure to store the
network entity. Typically, you use this data
structure in conjunction with the RIV::Agent
module to write discovery agents.

RIV::RecordCache Provides an interface to access records that
reside in a cache.

RIV::SnmpAccess Provides an interface to perform
SNMP-related operations on Network
Manager MIB trees.

Note: Discovery agents in previous versions
of the Perl API used this module to obtain
SNMP information from network devices.
Discovery agents implemented with this
version of the Perl API should use the
SNMP methods that the RIV::Agent module
provides.

Types of applications

There are two types of applications that you can write using the Perl API:

© Copyright IBM Corp. 2006, 2012 1

v Discovery agents — Use the RIV::Agent constructor and the
ncp_disco_perl_agent binary to create discovery agent applications.

v Other client/server applications — Use the RIV::App constructor and the
ncp_perl binary to other client/server applications. Examples of these other
client/server applications include those that access Network Manager databases.

These application objects are required for interaction with Network Manager IP
Edition components (through the virtual methods exported through the RIV
module) and for instantiation of the other RIV modules. Application objects that the
RIV::Agent and RIV::App constructors return are identical for the purpose of
accessing other module functionality (for example, RIV::OQL).

RIV module functions

The following table identifies and briefly describes the functions that the RIV
module provides for Network Manager discovery agents and other Network
Manager client/server applications:

RIV module function Description

RIV::GetInput This function has been deprecated. Use the
RIV::GetResult function.

RIV::GetResult Obtains input either directly or indirectly
from message broker.

RIV::InputFilter Binds the specified input function to input
tags that match the specified regular
expression.

RIV::InputQueueLength Returns the number of items waiting in the
application's input queue.

RIV::IsIpNotLoopBackOrMulticast Determines whether the specified address is
a valid IP address and not a loop back or
multicast address.

RIV::IsIpValid Determines whether the specified address is
a valid IP address.

RIV::IsIpv4Valid Determines whether the specified address is
a valid IPv4 address.

RIV::IsIpv6Valid Determines whether the specified address is
a valid IPv6 address.

RIV::ReadDir Returns a reference to an array of filenames
contained in the specified directory.

RIV::RivDebug Prints a list of debug message strings to the
standard output.

RIV::RivMessage Prints a list of log message strings to the
standard output.

RIV::RivError Displays error messages.

See “RIV module reference” on page 53 for the reference (man) pages associated
with these functions.

2 IBM Tivoli Network Manager IP Edition: Perl API Guide

RIV module virtual methods

The following table identifies and briefly describes the virtual methods that the RIV
module provides for Network Manager discovery agents and other Network
Manager client/server applications:

RIV module virtual method Description

AddSubject Binds the application to the specified
message broker subject.

AddTimer Creates a single-shot or repeating timer.

DebugLevel Provides access to the global Network
Manager debug setting through the
RIV::DebugLevel variable.

DecryptPassword Decrypts a password that was previously
encrypted in a previous call to the
EncryptPassword RIV module virtual
method.

EncryptPassword Returns an encrypted representation of the
specified password.

Latency Retrieves the timeout for queries.

PostInput Adds a message to the queue.

PublishMessage Publishes the specified message string.

PublishMessage Encodes the hash reference into a message
broker string.

RetryLimit Sets the retry limit for queries or returns the
maximum number of retries for queries.

See “RIV module reference” on page 53 for the reference (man) pages associated
with these functions.

RIV::Agent module overview
The RIV::Agent module provides an interface for implementing Network Manager
discovery agents. A discovery agent is a specialized application that retrieves
connectivity-related information for network entities.

RIV::Agent constructor

The RIV::Agent module provides a constructor that creates a discovery agent
application object. Use this application object to:
v Interact with Network Manager IP Edition core components libraries using the

virtual methods exported from the RIV module.
v Instantiate objects for and interact with the other Perl modules: RIV::Param,

RIV::Record, and RIV::RecordCache.

Input data records

Input data records that the discovery service sends are supplied through the
RIV::GetResult method. These input data records can be stored as RIV::Record
objects, which are nested hash lists to which you can add local and remote
neighbors.

Chapter 1. Perl API overview 3

Note: All input data records that other services (including the OQL service) send
are also supplied through the RIV::GetResult method.

Discovery agents and multiple threads

The RIV::Agent module allows you to implement discovery agents using multiple
threads. The threads implementation creates a single master Perl interpreter that
gets copied, one for each thread. Thus, if the discovery agent makes use of three
threads, there will be three copies of the master interpreter. Specifically, the
RIV::Agent module provides the LockThreads and UnLockThreads methods related
to discovery agents and multiple threads.

SNMP operation methods

The RIV::Agent module provides methods that discovery agents use to obtain
Simple Network Management Protocol (SNMP) information from network devices.
These methods obtain this information through the Helper Server. Thus, the Helper
Server (and ncp_ctrl) must be running so that the SNMP-related methods can
make the appropriate SNMP requests.

The following table identifies and briefly describes the SNMP operation methods
that the RIV::Agent module provides:

SNMP method Description

SnmpGet Performs an SNMP get operation.

SnmpGetNext Performs an SNMP get-next operation.

SnmpGetBulk Performs an SNMP get-bulk operation.

See “RIV::Agent module reference” on page 71 for the reference (man) pages
associated with these methods.

DNS operation methods

The RIV::Agent module provides methods that discovery agents use to obtain
Domain Name System (DNS) information from network devices. These methods
obtain this information through the Helper Server. Thus, the Helper Server (and
ncp_ctrl) must be running so that the DNS-related methods can make the
appropriate DNS requests.

The following table identifies and briefly describes the DNS operation methods
that the RIV::Agent module provides:

DNS method Description

GetDNSAllIpAddrs Gets all IP addresses corresponding to a
particular node name.

GetDNSAllNames Gets all node names corresponding to the
specified IP addresses.

GetDNSFirstIpAddr Gets the first IP address in the list of IP
addresses for this node.

GetDNSFirstName Gets the first node name in the list of node
names for this IP address.

4 IBM Tivoli Network Manager IP Edition: Perl API Guide

See “RIV::Agent module reference” on page 71 for the reference (man) pages
associated with these methods.

Ping operation methods

The RIV::Agent module provides methods that discovery agents use to perform
ping operations on network devices. Ping operations determine whether a specific
IP or subnet address is accessible. Typically, the ping operation sends a packet to
the specified address and waits for a reply.

The RIV::Agent module ping operation methods perform the specified ping
operation through the Helper Server. Thus, the Helper Server (and ncp_ctrl) must
be running so that these ping-related methods can make the appropriate ping
requests.

The following table identifies and briefly describes the ping operation methods
that the RIV::Agent module provides:

ping method Description

GetPingIP Pings the specified IP address and returns
whether a network device exists at that
address.

GetPingList Pings the specified list of IP addresses and
returns a list of network devices that exist at
those addresses.

GetPingSubnet Pings the specified subnet and returns
whether one or more devices exist at that
subnet.

Ping Pings the specified IP address.

PingList Pings the specified list of IP addresses.

PingSubnet Pings the specified subnet.

See “RIV::Agent module reference” on page 71 for the reference (man) pages
associated with these methods.

IP and MAC address operation methods

The RIV::Agent module provides methods that discovery agents use to perform
operations on Internet Protocol (IP) and Medium Access Control (MAC) addresses.
The RIV::Agent module IP and MAC address operation methods perform the
specified address operation through the Helper Server. Thus, the Helper Server
(and ncp_ctrl) must be running so that these address-related methods can make the
appropriate address operation requests.

The following table identifies and briefly describes the IP and MAC address
operation methods that the RIV::Agent module provides:

Address method Description

GetIpArp Converts the specified MAC address to an
IP address.

GetMacArp Converts the specified IP address to a MAC
address.

Chapter 1. Perl API overview 5

Address method Description

GetTraceRoute Traces a route to the specified destination IP
address and returns a list of network devices
that reside on that route.

See “RIV::Agent module reference” on page 71 for the reference (man) pages
associated with these methods.

Telnet operation methods

The RIV::Agent module provides methods that discovery agents use to obtain
network device information through Telnet rather than SNMP. Like the SNMP
methods, the Telnet methods obtain network device-related information through
the Helper Server. Thus, the Helper Server (and ncp_ctrl) must be running so that
the Telnet-related methods can make the appropriate Telnet requests.

The following table identifies and briefly describes the Telnet operation methods
that the RIV::Agent module provides:

Telnet method Description

GetMultTelnet Executes multiple Telnet commands on the
specified network device.

GetTelnet Executes the specified Telnet command on
the specified network device.

GetTelnetCols Executes the specified Telnet command on
the specified network device and splits the
return data into table columns.

See “RIV::Agent module reference” on page 71 for the reference (man) pages
associated with these methods.

Network entity operation methods

The RIV::Agent module provides methods that discovery agents use to perform
operations on network entities. Specifically, the RIV::Agent module provides
methods that perform the following network entity operations:

Network entity method Description

SendNEToDisco Sends processed records from RIV::Record
to the returns table of the specified Agent
database in Disco.

SendNEToNextPhase Marks the network entity as having
completed the current phase and puts the
network entity back on the Agent queue
ready for processing in the next phase.

See “RIV::Agent module reference” on page 71 for the reference (man) pages
associated with these methods.

6 IBM Tivoli Network Manager IP Edition: Perl API Guide

RIV::App module overview
The RIV::App module provides an interface for implementing Network Manager
client/server applications within one domain.

RIV::APP constructor

The RIV::App module provides two constructors that create a client/server
application object. You use this client/server application object to:
v Interact with Network Manager core components libraries using the virtual

methods exported from the RIV module.
v Instantiate objects for and interact with the other Perl modules: RIV::OQL,

RIV::Param, RIV::Record, and RIV::RecordCache.

A client/server application can create one or more RIV::App application objects as
required. For example, two instances of RIV::App application objects would be
needed in order to implement some special purpose cross-domain behavior.

One example of a client/server application is one that performs one or more OQL
queries (in which case the RIV::OQL module would also be used).

Note: The RIV::App module provides the interface for implementing all Network
Manager client/server applications except for discovery agents. To write discovery
agents, use the RIV::Agent module.

RIV::OQL module overview
The RIV::OQL module provides an interface to communicate with and perform
operations on Network Manager internal databases.

RIV::OQL constructor

The RIV::OQL module provides a constructor that creates and initializes a new
RIV::OQL object. The RIV::OQL constructor takes a blessed reference to either a
discovery agent application object or a client/server application object. These
application objects were returned in a previous call to the RIV::Agent or RIV::App
constructor. The RIV::OQL constructor also takes the name of a service that
indicates the Network Manager internal database to use.

Database operation methods

The RIV::OQL module provides methods that client/server applications use to
perform a variety of operations on Network Manager internal databases.

The following table identifies and briefly describes the database operation methods
that the RIV::OQL module provides:

Database method Description

CreateDB Creates a database.

CreateTable Creates a database table.

Delete Deletes records from a database table.

Insert Inserts records into a database table.

Print Prints records as a result of a database
query.

Chapter 1. Perl API overview 7

Database method Description

Select Executes the specified OQL statement.

Send Communicates with the specified database.

Update Updates records that currently reside in the
specified database.

See “RIV::OQL module reference” on page 96 for the reference (man) pages
associated with these methods.

RIV::Param module overview
The RIV::Param module provides an interface to parse standard and Network
Manager application-specific command line arguments.

Standard arguments

Standard arguments are used to specify information about the Network Manager
execution environment and to select debug output and application help. All
Network Manager applications must support these arguments.

The standard arguments that the RIV::Param module provides are summarized in
the following table:

Argument Description

-domain domain name Specifies the command line argument used
to identify the domain in which a user
wants to perform some task, for example,
starting the Network Manager core
components.

The domain name argument specifies the
name of the domain.

-debug debug level Specifies the command line argument used
to identify the level of debugging output
that a user prefers.

The debug level argument specifies a value
from 1-4, where 4 represents the most
detailed output.

-latency query latency Specifies the command line argument used
to specify the maximum time that CLASS
waits to connect to another Network
Manager process by means of the messaging
bus. This option is useful for large and busy
networks where the default settings can
cause processes to assume that there is a
problem when in fact the communication
delay is a result of network traffic.

The query latency argument specifies the
maximum time in milliseconds (ms) that
CLASS waits.

8 IBM Tivoli Network Manager IP Edition: Perl API Guide

Argument Description

-messagelevel message level Specifies the command line argument used
to identify the level of message output that a
user prefers.

The message level argument specifies the level
of message to be logged (the default is
warn):

v debug

v info

v warn

v error

v fatal

-help Specifies the command line argument used
to display command line options.

RIV::Param constructor

The RIV::Param module provides a constructor that creates and initializes a new
RIV::Param object. The RIV::Param constructor takes three optional parameters
used to specify:
v Application-specific parameters
v Usage information or nonstandard command line argument scenarios
v Help information written to standard output

The RIV::Param object can be used as the first parameter to the RIV::App
constructor in place of the domain name argument. In this case, the application
object is created with the specified values. Likewise, the RIV::Param object can be
used as the first parameter to the RIV::Agent constructor.

See “RIV::Param Constructor” on page 106 for details.

RIV::Param module constants

The RIV::Param module also provides several constants that the RIV::Param
constructor uses to identify a particular command line as follows:

Constant Description

RivParamNoArg Specifies that the command line takes no
arguments.

RivParamSingleArg Specifies that the command line takes one
argument.

RivParamMandatory Specifies that the command line takes a
mandatory argument.

Parameter operation methods

The RIV::Param module provides methods that client/server applications use to
print usage information or to obtain information about domain and command
names.

Chapter 1. Perl API overview 9

The following table identifies and briefly describes the parameter operation
methods that the RIV::Param module provides:

Parameter method Description

CommandName Returns the name of the command.

DomainName Returns the name of the domain.

Usage Writes a brief usage explanation to standard
output.

See “RIV::Param module reference” on page 106 for the reference (man) pages
associated with these methods.

RIV::Record module overview
The RIV::Record module provides a data structure to store network entity data
records.

Network entities

The RIV::Record module is used in conjunction with the RIV::Agent module to
write discovery agents. The RIV::Record data structure stores records associated
with the network entities sent by DISCO to the Perl Discovery Agent. You can then
add local neighbors and remote neighbors to this record by calling the appropriate
local and remote neighbor operation methods.

RIV::Record constructor

Before accessing the methods that the RIV::Record module provides, you must call
the RIV::Record constructor to create and initialize a new RIV::Record data
structure. This data structure stores network entity records retrieved from DISCO.

RIV::Record data structure

The following respresents a RIV::Record data structure:
$refLocalNeighbours = $record->{m_LocalNbr};
@LocalNeighbours = @$refLocalNeighbours;
$refRemoteNeighbours = $LocalNeighbours[$i]->{m_RemoteNbr};
@RemoteNeighbours = @$refRemoteNeighbours;
$refRemoteNeighbour = $RemoteNeighbours[$j];
%remoteNeighbour = %$refRemoteNeighbour;

The value for the key m_LocalNbr is a pointer to an array, which is a list of hashes,
where each hash represents a local neighbor. If there are any remote neighbors, the
local neighbor has a key (m_RemoteNbr) whose value points to the reference of an
array, which is a list of hashes, each representing a remote neighbor. You will need
this data structure if you intend to manipulate it directly. In most cases, however,
your task is limited to creating hash lists that define the local and remote
neighbors.

The AddLocalNeighbour and AddRemoteNeighbour methods can be used to add
neighbors, and the GetLocalNeighbours and GetRemoteNeighbours methods can be
used to retrieve information about neighbors.

10 IBM Tivoli Network Manager IP Edition: Perl API Guide

Local and remote neighbor operation methods

The RIV::Record module provides methods that discovery agents use to perform
add and get operations on local and remote neighbors.

The following table identifies and briefly describes the local and remote operation
methods that the RIV::Record module provides:

Local and remote neighbor method Description

AddLocalNeighbour Adds a local neighbor.

AddLocalNeighbourTag Adds a tag to a local neighbor.

AddRemoteNeighbour Adds a remote neighbor.

AddRemoteNeighbourTag Adds a tag to a remote neighbor.

GetLocalNeighbours Returns an array of local neighbors.

GetRemoteNeighbours Returns an array of remote neighbors.

Print Prints the current record.

See “RIV::Record module reference” on page 113 for the reference (man) pages
associated with these methods.

RIV::RecordCache module overview
The RIV::RecordCache module provides an interface to access a record cache file.

RIV::RecordCache constructor

Before accessing the methods that the RIV::RecordCache module provides, you
must call the RIV::RecordCache constructor to create and initialize a new record
cache file object. The RIV::RecordCache constructor takes a blessed reference to
either a discovery agent application object or a client/server application object.
These application objects were returned in a previous call to the RIV::Agent or
RIV::App constructor.

The RIV::RecordCache constructor also takes the name of the record cache file
object to be created and an optional path to this object. By default, the optional
path is $NCHOME/var/precision

Record cache operation methods

The RIV::RecordCache module provides methods that applications use to perform a
variety of operations on records that reside in the cache file.

The following table identifies and briefly describes the record cache operation
methods that the RIV::RecordCache module provides:

Record cache method Description

CacheRecord Adds a record to the cache file.

GetRecord Retrieves a record from the cache file.

GetRecords Retrieves a list of all records residing in the
cache file.

Chapter 1. Perl API overview 11

See “RIV::RecordCache module reference” on page 118 for the reference (man)
pages associated with these methods.

RIV::SnmpAccess module overview
The RIV::SnmpAccess module provides an interface to perform SNMP-related
operations on Network Manager MIB trees.

Obtaining SNMP information with the RIV::Agent and
RIV::SnmpAccess modules

The following list summarizes how discovery agents should deal with obtaining
SNMP information with this version of the Perl API:
v The Helper Server (and ncp_ctrl) must be running so that the Get, GetNext, and

GetBulk methods provided by the RIV::Agent and RIV::SnmpAccess modules can
make the appropriate queries.

v Discovery agents implemented with this version of the Perl API should use the
Get, GetNext, and GetBulk methods provided by the RIV::Agent module to
obtain SNMP information from a network device.

v Discovery agents implemented with previous versions of the Perl API and that
called the Get, GetNext, and GetBulk methods provided by the RIV::SnmpAccess
module will work. There is no need to port these discovery agents to use the
Get, GetNext, and GetBulk methods provided by the RIV::Agent module.

RIV::SnmpAccess constructor

Before accessing the methods that the RIV::SnmpAccess module provides, you must
call the RIV::SnmpAccess constructor to create and initialize a new RIV::SnmpAccess
object. The RIV::SnmpAccess constructor takes a blessed reference to either a
discovery agent application object or a client/server application object. These
application objects were returned in a previous call to the RIV::Agent or RIV::App
constructor.

Maximum number of concurrent asynchronous requests

The RIV::SnmpAccess module provides a MaxAsyncConcurrent variable that sets the
maximum number of concurrent asynchronous requests.

Synchronous and asynchronous SNMP operation methods

The RIV::SnmpAccess module provides an interface to the Vertigo SNMP and MIB
library functions. Both synchronous and asynchronous variants of each SNMP Get
method are provided. The synchronous versions cause the caller to wait until the
results are available (or the request has failed). The asynchronous versions all
return results via RIV::GetResult. By using this latter method, overlapped I/O
may be implemented without the complexity of using Perl threads.

SNMP operation methods

The RIV::SnmpAccess module provides methods that discovery agents and
client/server applications use to perform SNMP operations on a network device
through the Helper Server. Thus, the Helper Server (and ncp_ctrl) must be running
so that the SNMP-related methods can make the appropriate SNMP requests.

The following table identifies and briefly describes the SNMP operation methods
that the RIV::SnmpAccess module provides:

12 IBM Tivoli Network Manager IP Edition: Perl API Guide

SNMP operation method Description

ASN1ToOid Converts the specified ASN.1 value to its
corresponding OID.

AsyncSnmpGet Performs an asynchronous SNMP get
operation on the specified MIB variable.

AsyncSnmpGetBulk Performs an asynchronous SNMP get-bulk
operation on all MIB objects in the specified
MIB table.

AsyncSnmpGetNext Performs an asynchronous SNMP get-next
operation on the specified MIB variable.

GetMibHash Gets the entire MIB tree by browsing the
files that exist in the $NCHOME/mibs directory.

OidToASN1 Converts the specified OID to its
corresponding ASN.1 value.

SnmpGet Performs a synchronous SNMP get
operation on the specified MIB variable.

SnmpGetBulk Performs a synchronous SNMP get-bulk
operation on all MIB objects in the specified
MIB table.

SnmpGetNext Performs a synchronous SNMP get-next
operation on the specified MIB variable.

SplitOidAndIndex Converts the full ASN.1 value into its index
and the base OID.

See “RIV::SnmpAccess module reference” on page 122 for the reference (man)
pages associated with these methods.

NCP modules overview
The NCP modules provide interfaces that operate on the NCIM topology database
and domains.

Summary of Perl API NCP modules

The following table identifies and briefly describes the Perl API NCP modules:

Perl API NCP Module Description

NCP::DBI_Factory Provides an interface to make it easier to use
the standard Perl DBI module to perform
operations on the Network Connectivity and
Inventory Model (NCIM) topology database.

NCP::Domain Provides an interface to perform operations
on NCIM domains.

Chapter 1. Perl API overview 13

NCP::DBI_Factory module overview
The NCP::DBI_Factory module provides an interface to make it easier to use the
standard Perl DBI module to perform operations on the NCIM topology database.
Use of this module assumes that you understand the standard Perl DBI module.
The NCP::DBI_Factory module reads the database login details from
DbLogins.DOMAIN.cfg, which allows it access to the pre-configured data sources
such as NCIM.

DBI handle

The NCP::DBI_Factory module provides a method that creates and initializes a new
DBI handle. You pass this handle in subsequent calls to the methods that perform
operations on the specified NCIM topology database. This DBI handle contains the
information needed to connect to the requested NCIM topology database.

Databases that the DBI_Factory module supports

The NCP::DBI_Factory module currently supports operations on the following
databases:
v DB2®

v Informix
v MySql
v Oracle

For all of these databases, table and field names are case-insensitive from the point
of view of SQL statements. However, rows returned by both the DB2 and Oracle
databases will have all field names in upper case, rows returned by the MySql
database will have all field names in mixed case, and rows returned by Informix
will have field names in lower case. The NCP::DBI_Factory module provides the
toUpper method that returns a copy of a single row with all lower case field names
in upper case.

NCIM Database operation methods

The NCP::DBI_Factory module provides methods that client/server applications
use to perform a variety of operations on the specified NCIM topology database.

The following table identifies and briefly describes the database operation methods
that the NCP::DBI_Factory module provides:

NCIM Database method Description

createDbHandle Creates a standard DBI handle to be used in
subsequent calls to the other
NCP::DBI_Factory methods.

describeTable Returns a sorted array of upper case field
names for the specified table or view.

extractCmdLineOptions Allows database login options for the DBI
handles to be provided in a common format.

extractHashRefOptions Extracts database login options from a
reference to a hash.

insert_auto_inc_row Inserts a row into a named table, where the
table has an auto incremented column.

insert_row Inserts a row into a named table.

14 IBM Tivoli Network Manager IP Edition: Perl API Guide

NCIM Database method Description

schema Returns the schema name associated with
the NCIM topology database being used.

setLogHandle Passes in a log handle associated with an
opened file used for logging messages.

setLogLevel Sets the log level for error and message
reporting.

tables Returns a sorted array of table and view
names for the current schema.

timeStamp Returns the current timestamp in a format
suitable for addition to the NCIM topology
database.

toUpper Returns a copy of a hash (a single row
retrieved from an NCIM database table)
with all field names converted to upper case.

See “NCP::DBI_Factory module reference” on page 135 for the reference (man)
pages associated with these methods.

NCP::Domain module overview
The NCP::Domain module provides an interface to perform operations on NCIM
Network Manager domains.

NCP::Domain constructor

Before accessing the methods that the NCP::Domain module provides, you must call
the NCP::Domain constructor to create a new NCP::Domain object. The NCP::Domain
constructor requires the domain name and options for the database connection.
The newly created NCP::Domain object encapsulates the attributes associated with
the specified domain and database connection.

NCIM domain operation methods

The NCP::Domain module provides methods that client/server applications use to
perform a variety of operations on a specified NCIM domains. Some of these
operations involve the domainMgr table in the NCIM topology database that
resides in the specified domain.

The following table identifies and briefly describes the database operation methods
that the NCP::Domain module provides:

NCIM domain database method Description

clone Creates a new domain that is a copy of an
existing domain.

create Creates an entry in the domainMgr table for
this domain if one does not already exist.

drop Removes all references to the specified
domain from the domainMgr table.

id Retrieves the domainMgrId from the
domainMgr table in the NCIM topology
database that resides in the specified
domain.

Chapter 1. Perl API overview 15

NCIM domain database method Description

name Returns the domain name for the current
domain.

setLogHandle Passes in a log handle associated with an
opened file used for logging messages.

setLogLevel Sets the log level for error and message
reporting.

See “NCP::Domain Reference” on page 161 for the reference (man) pages
associated with these methods.

Synchronization with message broker
The Network Manager IP Edition core components use of message broker is highly
multithreaded, whereas Perl applications are single-threaded. Although support for
threads was included from Perl 5.005 onwards, this is neither operating
system-native, nor POSIX in semantics. Thus, there is no possibility of direct
thread-safe integration between the Network Manager IP Edition and Perl code.

All modules contained in RIV (except for the RIV::Agent module) assume a single
Perl thread. If multiple Perl threads are used, a single thread (the one in which the
session was instantiated) must be used for interaction with Network Manager IP
Edition core components. The RIV::SnmpAccess module provides both synchronous
and asynchronous methods that allow you to perform operations on the MIB tree.
The methods RIV::InputQueueLength and RIV::GetResult are used to query and
extract from the application's input queue.

The RIV::Agent module provides a multithreading capability into the Perl
discovery agent.

See “Using threads in discovery agents” on page 33 for more information.

Installing the Perl API
The Perl API and its associated modules reside in a specific directory.

After installing the Perl API, the required version of Perl and its associated
modules reside in the $NCHOME/precision/perl directory.

Note: The Perl API is installed when you install either the IBM Tivoli Monitoring
core components or the Web GUI. Typically, you source the appropriate
environment variables in $NCHOME/precision/env.sh to set up the required
environment to use the Perl API.

16 IBM Tivoli Network Manager IP Edition: Perl API Guide

Perl builds
Network Manager IP Edition provides two customized Perl executables as it is
necessary to use static linkage against the Network Manager IP Edition core
components libraries.

The first executable is the ncp_disco_perl_agent binary. This binary is used by
Discovery agents and it is executed automatically by ncp_disco. You would not
expect to run this binary directly.

The second executable is the ncp_perl binary. You use this binary to develop Perl
scripts to customize ITNM or to integrate with other products.

Obtaining SNMP information from a network device
The Perl API allows discovery agents and other client/server applications to obtain
SNMP information from a network device through the Helper Server. Typically,
this information is retrieved from one or more MIB variables or an entire MIB
table.

Helpers retrieve information from the network during a discovery. More
specifically, the SNMP helper (ncp_dh_snmp) returns results of an SNMP request
such as Get, GetNext, GetBulk, and so forth. The Helper Server can service these
SNMP requests directly with cached data or pass on the request to the SNMP
helper. The methods that the RIV::Agent and RIV::SnmpAccess modules provide
query the Helper Server. Therefore, the Helper Server must be running so that the
methods in these modules can obtain SNMP information from network devices.

Note: It is no longer possible to obtain SNMP information directly from a network
device as all queries are now made through the Helper Server.

See the IBM Tivoli Network Manager IP Edition Administration Guide (SC27-2761-00)
for more information on the Helper Server.

In previous versions of the Perl API, the only way to obtain SNMP information
from a network device was to call the methods defined in the RIV::SnmpAccess
module. Futhermore, a discovery agent could obtain SNMP information directly
from a network device.

The following list summarizes how discovery agents and other client/server
applications should deal with obtaining SNMP information with this version of the
Perl API:
v The Helper Server (and ncp_ctrl) must be running so that the Get, GetNext, and

GetBulk methods provided by the RIV::Agent and RIV::SnmpAccess modules can
make the appropriate queries.

v Discovery agents implemented with this version of the Perl API should use the
Get, GetNext, and GetBulk methods provided by the RIV::Agent module to
obtain SNMP information from a network device.

v Discovery agents implemented with previous versions of the Perl API and that
called the Get, GetNext, and GetBulk methods provided by the RIV::SnmpAccess
module will work. There is no need to port these discovery agents to use the
Get, GetNext, and GetBulk methods provided by the RIV::Agent module.

Chapter 1. Perl API overview 17

Perl API modules reference page syntax
The Perl API modules reference pages use a consistent reference page format.

Each Perl API module reference page uses the following format:
v Constructor/Method — This section specifies the name of the constructor or

method associated with this Perl API module.
v Synopsis — This section provides the definition for this constructor or method.
v Description — This section provides a description of the functionality that this

constructor or method provides.
v Parameters — This section provides descriptions for the input parameters

identified in the Synopsis for this constructor or method. If there are no input
parameters, this section specifies None.

v Returns — This section provides a description of the value or values that this
constructor or method returns. If no values are returned, this section specifies
None.

v Notes® — This optional section provides additional information about a
constructor or method.

v Example Usage — This section provides an example of how to call this
constructor or method.

v See Also — This section provides references to modules or methods that you
should be aware of when using this module's constructor or methods.

18 IBM Tivoli Network Manager IP Edition: Perl API Guide

Chapter 2. Writing discovery agents

Discovery agents retrieve information about devices in the network. They also
report on new devices by finding new connections when investigating device
connectivity. Discovery agents are used for specialized tasks. For example, the ARP
Cache discovery agent populates the Helper Server database with IP
address-to-MAC address mappings. You can use the Perl API to write custom
discovery agents that perform a variety of useful and specialized tasks, including
retrieving information about the connectivity of network entities.

To create custom discovery agents in Perl, you use the RIV, RIV::Agent,
RIV::Param, and RIV::Record modules.

Before you write a discovery agent
The Perl API is designed to enable the easy creation and prototyping of custom
discovery agents. Before writing a custom discovery agent, you need to perform
some prerequisite tasks and to be familiar with the discovery process.

Before writing a custom discovery agent, ensure that you have completed these
steps:
1. Copied the Agent Definition File (.agnt file extension) to the

$NCHOME/precision/disco/agents directory.
See“Prototype agent definition file template” on page 31 for details about this
file.

2. If additional MIBS are required, ensure that they are copied to the
$NCHOME/precision/mibs directory and that the ncp_mib process is run to
import these MIBs into the database.

3. Created new discovery stitchers to process the returns data from the new
discovery agent and to add the data into the topology.
See the IBM Tivoli Network Manager IP Edition Language Reference (SC27-2768-00)
for a detailed description of stitchers and the stitcher language.

4. Started the Helper Server (and ncp_ctrl). The Helper Server (and ncp_ctrl) must
be running because the SNMP-related methods that the RIV::Agent module
provides query the Helper Server. It is not possible to obtain SNMP
information directly from a network device.

In addition, you should also be familiar with:
v The architecture of the discovery process
v How discovery agents communicate with the DISCO process and the Helper

Servers
v The different databases created in the DISCO process to enable discovery agents

to work successfully

See IBM Tivoli Network Manager IP Edition Product Overview (GC27-2759-00) for
more information on the previously listed topics.

© Copyright IBM Corp. 2006, 2012 19

Writing a discovery agent
Writing a discovery agent requires you to use the RIV::Agent and RIV::Record
modules and to perform a number of prescribed steps. Many discovery agents also
use the RIV and RIV::Param modules.

The following topics describe the steps to follow when writing a discovery agent,
using the IP routing discovery agent as an example.

Step 1: Create an agent.pl file

Create an agent.pl file to contain the Perl code that implements the discovery
agent.

Where:
v agent — Specifies the name of the file to contain the discovery agent Perl code.

For example: ASAgent.pl, TunnelAgent.pl, and NATTextFileAgent.pl are agent.pl
files that contain the Perl code that implement their respective discovery agents.

Create the agent.pl file in the $NCHOME/precision/disco/agents/perlAgents
directory.

Step 2: Declare Perl modules

Declare the Perl modules (using use statements) the discovery agent requires. For
example:
use RIV;
use RIV::Param;
use RIV::Record;
use RIV::Agent;

Step 3: Create a new agent

To begin, you must create a new discovery agent using the RIV::Agent constructor
that the RIV::Agent module provides. This constructor sets the name of the
discovery agent and also sets up the TCP connections to the DISCO and Helper
Server processes. For example:
$param = new RIV::Param();
$agent = new RIV::Agent($param, "foo");

The example shows that the RIV::Agent constructor consists of two parameters:
v $param — Specifies a RIV::Param object. As the example shows, this object is

returned in a call to the RIV::Param constructor.
v $agentName — Specifies a string that identifies the name of this discovery agent.

In this example, the name of the agent is foo.

The RIV::Agent constructor returns a discovery agent application object to the
$agent variable. You reference all RIV::Agent module methods through this object.
For example: $agent->SnmpGet(...), $agent->SnmpGetNext(...), and so forth.

Step 4: Wait for input from the DISCO process

Once the finders detect a network entity that has an OID matching a device that
needs to be processed by the discovery agent, the network entity is inserted into
the agent's despatch table.

20 IBM Tivoli Network Manager IP Edition: Perl API Guide

Note: The list of devices supported by the DISCO process is defined in the Agent
Definition File.

The DISCO process then sends the record of the device to the agent for processing.
This record is received by the Perl discovery agent using the $agent-
>RIV::GetResult() method. The records received from DISCO are tagged with the
string NE. For example:
DEVICE: while (1)
{

my ($tag,$data) = RIV::GetInput(-1);
if ($tag ne "NE")
{

print "Data is not a network entity. Ignoring it!\n";
next DEVICE;

}
my ($tag, $data) = $agent->RIV::GetResult(-1);
if ($tag ne "NE")
{
print "Data is not a network entity. Ignoring it!\n";
next DEVICE;
}
else
{
print "This agent is going to process the device!\n";
}

Step 5: Create a RIV::Record object

When DISCO sends a record for processing by the discovery agent, the record can
be conveniently stored in a data structure. This data structure is referred to as a
RIV::Record object. You use the RIV::Record constructor that the RIV::Record
module provides to create this object. For example:
my $TestNE = new RIV::Record($data);

The RIV::Record constructor takes the following parameter:
v $refNE — Specifies a reference to a hash list.

The record that DISCO sends for processing may be a request from ncp_disco for
the agent to terminate. The following code checks for this termination request:
my $TestNE = new RIV::Record($data);

if ($TestNE->{m_TerminateAgent})
{

log_msg("Exit Main Loop\n");
exit(0);

}

The RIV::Record constructor returns a RIV::Record object.

The RIV::Record module provides methods that enable you to easily add and
retrieve local and remote neighbors. For example, the following example shows a
call to the AddLocalNeighbour method.
my %localNbr;
$localNbr{’m_IpAddress’} = ’1.2.3.4’;
$localNbr{’m_IfIndex’} = 2;
$TestNE->AddLocalNeighbour(\%localNbr);

Chapter 2. Writing discovery agents 21

The AddLocalNeighbour method takes a $refNbr parameter that specifies a reference
to a hash list. This hash list defines the local neighbor as a set of key value pairs
(varBinds).

Step 6: Decide if the agent must process the device
(pre-mediation layer)

In the pre-mediation layer you must write Perl code to decide if the device needs
to be processed by this discovery agent. The Agent Definition File should be used
to filter out devices based on the OIDs.

Note: The list of devices supported by the DISCO process is defined in the Agent
Definition File.

Typically, this Perl code checks the device's IP address using the RIV::IsIpValid
method, as shown in the following example:
print "Checking if IP address is valid..\n";
if (!RIV::IsIpValid($host))
{
print "Device has invalid IP address. Ignoring the record!\n";
next DEVICE;
}

If the device's IP address is valid, then the discovery agent processes the device.
Otherwise, the discovery agent does not process the device. In the example an
appropriate message would display to standard output if the device has an invalid
IP address.

Step 7: Retrieve device information from the Helper Server
(meditation layer)

Next, you must retrieve device information from the Helper Server. This can be
achieved using SNMP Get, Telnet, or DNS. For example:
{
$refLifindex=$agent->SnmpGetNext($TestNE,’ipAdEntIfIndex’);
$refLnetmask=$agent->SnmpGetNext($TestNE,’ipAdEntNetMask’);
$refLphysaddress=$agent->SnmpGetNext($TestNE,’ifPhysAddress’);
$refRifindex=$agent->SnmpGetNext($TestNE,’ipRouteIfIndex’);
$refRtype=$agent->SnmpGetNext($TestNE,’ipRouteType’);
$refRnexthop=$agent->SnmpGetNext($TestNE,’ipRouteNextHop’);
}

The above example uses the RIV::Agent method SNMPGetNext. The SNMPGetNext
method takes two parameters:
v $ne — Specifies the network entity, which is typically a RIV::Record object.
v $oid — Specifies a MIB variable, for example, ipAdEntIfIndex in the above

example.

The above example performs SNMP GET operations on the network entity (NE) in
question and retrieves the specified MIB variables. If you prefer, you could
substitute the SnmpGetNext method with the appropriate methods to allow Telnet or
DNS access.

Step 8: Determine local and remote neighbors (processing layer)

In the processing layer, the local and remote neighbors are determined, based on
the information from the Mediation layer. A local neighbor is a network interface

22 IBM Tivoli Network Manager IP Edition: Perl API Guide

that resides on the device being discovered. A remote neighbor is something
connected to one of these network interfaces.

The following example is taken from the IP routing discovery agent:
sub Processing
{
print "Processing the local neighbours\n";
foreach $entry (@$refLifindex){
if (RIV::IsIpValid($entry->{ASN1})){
my %localNbr;
$localNbr{’m_IpAddress’} = $entry->{ASN1};
$localNbr{’m_IfIndex’} = $entry->{VALUE};
$TestNE->AddLocalNeighbour(\%localNbr);

}
}
}

Step 9: Sending the processed record to DISCO

Once the network entity has been processed, its record needs to be sent to DISCO.
The RIV::Agent method SendNEToDisco allows you to accomplish this task. The
SendNEToDisco method takes two parameters:
v $entity — Specifies a reference to a hash list that contains the definition of the

record to be sent to DISCO. For convenience, the RIV::Record module provides
an object that serves as a hash list with nested structures for representing local
and remote neighbors.

v $lastRecTag — Specify the value 1 to indicate that this is the last record for the
network entity. Specify the value 0 (zero) to indicate that more records for this
network entity are to follow.
If you use RIV::Record objects, the SendNEToDisco method ignores this
parameter.

Step 10: Running the newly created agent

Before running the newly created agent, make sure that you have:
v Created the agent definition file (agentName.agnt) in the $NCHOME/precision/

disco/agents directory. The following example shows the agent definition file
for a discovery agent called CustomPerlAgent:
$NCHOME/precision/disco/agents/CustomPerlAgent.agnt

v Created or copied the Perl discovery agent script (agentName.pl) in the
$NCHOME/precision/disco/agents/perlAgents directory. The following example
shows the Perl discovery agent script for a discovery agent called
CustomPerlAgent:
$NCHOME/precision/disco/agents/perlAgents/CustomPerlAgent.pl

v Registered the agent with ITNM using the following command:
$NCHOME/precision/bin/ncp_agent_registrar -register agentName

Where: agentName specifies the name of the discovery agent.
The following example shows how to register a discovery agent called
CustomPerlAgent:
$NCHOME/precision/bin/ncp_agent_registrar -register
CustomPerlAgent

Once the agent has been registered, you should be able to see it and any other
registered discovery agents in the Discovery Configuation GUI. Use the Discovery
Agent GUI to enable the discovery agent for the next discovery.

Chapter 2. Writing discovery agents 23

For information on the Discovery Configuation GUI, see IBM Tivoli Network
Manager IP Edition Discovery Guide (SC27-2762-00).

Example discovery agents
Typically, a network environment contains multiple discovery agents to support
the wide variety of network devices operating in this environment. Thus, the types
of discovery agents you can implement with the Perl API is extensive.

The following topics provide simple examples of discovery agents and a skeleton
outline of a discovery agent that you can use as a template.

Discovery agent skeleton
The discovery agent skeleton provides an outline of the sections typically
implemented in a discovery agent that makes use of the Perl API. This outline also
specifies calls to the constructors and methods (for example, new RIV::Agent,
RIV::IsIpValid, RIV::Agent::SendNEToDisco, and so forth) typically used in a
discovery agent. Use the discovery agent skeleton as a way to start implementing
your custom discovery agents.

The following Perl script provides a skeleton outline for a simple discovery agent.
Explanations of specific lines follow the skeleton outline:
use RIV;
use RIV::Param;
use RIV::Record;
use RIV::Agent; �1�
Create a new discovery agent
print "Creating a new agent\n"; �2�

sub Init{
my $param=new RIV::Param();

$agent=new RIV::Agent($param, "PerlDetails"); �3�
Wait for input from the DISCO process

print "Entering infinite loop wait for devices for Disco\n"; �4�

DEVICE: while (1){
my ($tag, $data) = $agent->RIV::GetResult(-1);
if ($tag ne ’NE’){ �5�
print "Data is not a Network entity Ignoring it!\n";
next DEVICE;

}
Create a RIV::Record object
my $TestNE = new RIV::Record($data);

if ($TestNE->{m_TerminateAgent})
{

log_msg("Exit Main Loop\n");
exit(0);

} �6�

Decide if the agent must process the device (pre-mediation layer)
...
...
print "Checking if IP address valid..\n";

if (!RIV::IsIpValid($host)){ �7�
print "Device has invalid IP address ignoring the record!\n";
next DEVICE;
}
Retrieve device information from the Helper Server (mediation layer)
...
print "Entering Mediation layer\n"; �8�

24 IBM Tivoli Network Manager IP Edition: Perl API Guide

Mediation();

print "Entering Processing layer\n";
Processing(); �9�

print "Sending Record to Discovery\n";
$agent->SendNEToDisco($TestNE,0); �10�
}

sub Mediation{ �11�
. . .
. . .
Retrieve the relevant information from the Helper Server using SNMP,

Telnet or DNS.
. . .
. . .

}
sub Processing{ �12�

. . .

. . .
Determine local and remote neighbors (processing layer) based
on the information retrieved in the Mediation Layer.
The neighbours are then added to the RIV::Record representing
the network entity.
. . .
. . .

}
Init();

The following list explains specific numbered items in the previously listed
skeleton outline of a discovery agent:
1. Declare the Perl API modules to use in the discovery agent. The RIV::Agent

and RIV::Record modules are required. The optional RIV::Param module is
useful for parsing standard and application-specific command line arguments.

2. Calls the print operator to display a message to the standard output
indicating the creation of a new discovery agent.

3. This is the create or initiate discovery agent section. Creates a new discovery
agent with the specified name. The skeleton outline specifies a discovery agent
with the name of PerlDetails.

4. The discovery agent is ready to receive records from DISCO.
5. Checks that the data records received from DISCO have been tagged with the

string NE.
6. Handles a request from ncp_disco to terminate the Perl discovery agent if the

test evaluates to true.
7. Checks that the device has a valid IP address.
8. This is the mediation layer section. Gets the relevant SNMP information.
9. This is the processing layer section. Interprets the information to find the local

and remote neighbors.
10. Sends the record and filled-out network entity to DISCO.
11. Implements the Mediation method.
12. Implements the Processing method.

Chapter 2. Writing discovery agents 25

Network entity discovery agent example
The purpose of many discovery agents is to accept network entities from DISCO,
process these entities in some way, and then return the result. This example
network entity discovery agent provides a skeleton outline for these tasks. Use this
example discovery agent skeleton to write discovery agents that need to
accomplish these tasks.

The following Perl script provides a skeleton outline for a simple network entity
discovery agent. Explanations of specific lines follow the skeleton outline:
1 use RIV;
2 use RIV::Param;
3 use RIV::Agent;
4 use RIV::Record;
5
6 $param = RIV::Param::new();
7 $agent = RIV::Agent::new($param, "PerlAgent");
8
9 while (1)
10 {
11 my ($tag, $data) = $agent->RIV::GetResult(-1);
12 next unless ($tag eq "NE");
13
14 foreach my $ne (@{ $data })
15 (
16 $NE = RIV::Record::new($ne);
17 ...
18 ...
19 $agent->SendToDisco($$ne,1);
20)
21)

The following list explains specific numbered items in the previously listed
discovery agent example:
v Lines 1-4

Declare the Perl API modules to use in the discovery agent. The RIV::Agent and
RIV::Record modules are required. The optional RIV::Param module is useful for
parsing standard and application-specific command line arguments.

v Lines 14-16

Checks that the data received from DISCO has been tagged with the string NE.
v Line 19

Returns the data to DISCO.

IP routing discovery agent example
The IP routing discovery agent Perl program shows how a simple discovery agent
can be written using the Perl API. Study this example to acquire additional
knowledge about how to write discovery agents using the Perl API.

The following IP routing discovery agent example uses a representative number of
the methods provided in the RIV::Agent, RIV::Record, and RIV::Param Perl API
modules. Explanations of specific lines follow the program.
use RIV;
use RIV::Param;
use RIV::Record;
use RIV::Agent; �1�

print "Creating a new agent\n"; �2�
Init();

26 IBM Tivoli Network Manager IP Edition: Perl API Guide

print "Entering infinite loop wait for devices for DISCO\n"; �3�

DEVICE: while (1){ �4�
my ($tag, $data) = $agent->RIV::GetResult(-1); �5�
if ($tag ne ’NE’){ �6�

print "Data is not a Network entityIgnoring it!\n";
next DEVICE; �6�

}

my $TestNE = new RIV::Record($data);
if ($TestNE->{m_TerminateAgent})
{

log_msg("Exit Main Loop\n");
exit(0); �7�

}
$TestNE->{’m_LastRecord’}=1; �8�
$TestNE->{’m_UpdAgent’}="PerlDetails"; �9�
my $host=$TestNE->{’m_IpAddress’}; �10�

The following list explains specific numbered items in the previously listed IP
routing discovery agent Perl program:
1. Declare the Perl API modules to use in this discovery agent. The RIV::Agent

and RIV::Record modules are required. The optional RIV::Param module is
useful for parsing standard and application-specific command line arguments.

2. Calls the print operator to display a message to the standard output
indicating the creation of a new discovery agent.

3. Calls the print operator to display a message to the standard output
indicating the program is ready to receive records from the DISCO process.

4. Sets up an infinite loop waiting to receive data from DISCO.
5. Calls the RIV::GetResult function to return a data record from DISCO. In this

call, the value -1 is passed signifying that RIV::GetResult should "wait
forever" to received data records from DISCO before returning.

6. Checks the data record that RIV::GetResult returns to the $tag variable. If the
returned data record has not been tagged with the string NE, then use the
print operator to display a message to the standard output indicating this
data record is not a network entity and thus should not be processed.

7. Continues through the loop to get the next data record from DISCO.
8. Creates a RIV::Record object by calling the RIV::Record constructor. In this

call, the data returned by RIV::GetResult to the $data variable is passed. This
data is actually a reference to a hash list, which is the mechanism used to
store network entity records from DISCO.
The RIV::Record constructor returns the newly created RIV::Record object to
the $TestNE variable.
This code also handles a request from ncp_disco to terminate the Perl
discovery agent if the test evaluates to true.

9. Assigns the value 1 to the m_LastRecord key in the hash.
10. Assigns the string PerlDetails to the m_UpdAgent key in the hash.
11. Assigns the value associated with the m_IpAddress key in the hash to the

$host variable.
print "Checking if IP address valid..\n"; �1�
if (!RIV::IsIpValid($host)){ �2�

print "Device has invalid IP address ignoring the record!\n";
next DEVICE;

}

print "Checking if its a router...\n";
$refNextHop=$agent->SnmpGet($TestNE,’ipForwarding’);

Chapter 2. Writing discovery agents 27

if ($refNextHop->{VALUE} != 1){ �3�
print "Device is not a router!\n";
next DEVICE;

}

print "Entering Mediation layer\n";
Mediation(); �4�

print "Entering Processing layer\n";
Processing(); �5�

print "Sending Record to Discovery\n";
$agent->SendNEToDisco($TestNE,0); �6�

} �7�

sub Init{
my $param=new RIV::Param();
$agent=new RIV::Agent($param, "PerlDetails");
} �8�

The following list explains specific numbered items in the previously listed IP
routing discovery agent Perl program:
1. This section of code is the Mediation Filter. Check that the device has a valid IP

address and also perform an SNMP get for ipforwarding. IP routers have a
value of ’ipforwarding’ =1.

2. Check that the NE has a valid IP address.
3. Check if the NE is a router. It is a router if the ipForwarding value is 1.
4. This section of code is the Mediation Layer. Get the relevant SNMP

information.
5. This section of code is the Processing Layer. Interpret the information to find

the local and remote neighbors.
6. Send the record to DISCO.
7. The main loop ends.
8. Creates a new agent with the name PerlDetails.
sub Mediation{ �1�

$refLifindex=$agent->SnmpGetNext($TestNE,’ipAdEntIfIndex’); �2�
$refLnetmask=$agent->SnmpGetNext($TestNE,’ipAdEntNetMask’); �2�
$refLphysaddress=$agent->SnmpGetNext($TestNE,’ifPhysAddress’); �2�

$refRifindex=$agent->SnmpGetNext($TestNE,’ipRouteIfIndex’); �3�
$refRtype=$agent->SnmpGetNext($TestNE,’ipRouteType’); �3�
$refRnexthop=$agent->SnmpGetNext($TestNE,’ipRouteNextHop’); �3�

}

sub Processing{ �4�
print "Processing the local neighbours\n";
for ($j=0;$j<=$#$refLifindex;$j++){

if (RIV::IsIpValid($refLifindex->[$j]->{ASN1}))
{

print $j, "\n";
my %localNbr
$localNbr{’m_IpAddress’} = $refLifindex->[$j]->{ASN1}; �5�
$localNbr{’m_IfIndex’} = $refLifindex->[$j]->{VALUE}; �5�
$localNbr{’m_NetMask’} = GetValueForKey($refLnetmask, �5�
$refLifindex->[$j]->{ASN1});

$m_1 = $localNbr{’m_IpAddress’};
$m_2 = $localNbr{’m_NetMask’};
$localNbr{’m_SubNet’} = inet_ntoa(pack("N", (unpack ("N",

28 IBM Tivoli Network Manager IP Edition: Perl API Guide

inet_aton($m_1)) & unpack("N",
inet_aton($m_2)))));

for ($i =0; $i <= $#$refLphysaddress; $i++)
{

if ($refLphysaddress->[$i]->{ASN1} == $refLifindex
->[$j]->{VALUE})

{
$localNbr{’m_LocalNbrPhysAddr’} = $refLphysaddress

->[$i]->{VALUE};
}
}
print $localNbr{’m_IpAddress’}, $localNbr{’m_IfIndex’},

$localNbr{’m_NetMask’}, "\n";
$TestNE->AddLocalNeighbour(\%localNbr);
}
}

print "processing for Remote Neighbours \n"; �6�
@localN = $TestNE->GetLocalNeighbours();
for ($j=0;$j<=$#$refRtype;$j++)
{
if(($refRtype->[$j]->{VALUE} !=2) && RIV::IsIpValid($refRtype
->[$j]->{ASN1}))
{

$nexthop = GetValueForKey($refRnexthop, $refRtype->[$j]->{ASN1});
print "next hop = $nexthop for key $refRtype->[$j]->{ASN1}\n";
if(NotLocalNbr($nexthop))
{

my %remoteNbr;
$remoteNbr{’m_IpAddress’} = $nexthop;
$Rindex = GetValueForKey($refRifindex,$refRtype->[$j]->{ASN1});
AttachLocalNbr(\%remoteNbr, $Rindex);

}
}

}
}

The following list explains specific numbered items in the previously listed IP
routing discovery agent Perl program:
1. This section of code implements the Mediation Layer. You should perform all

SNMP GET operations in this layer.
2. Get information required for determining local neighbors.
3. Get information required for determining remote neighbors.
4. This section of code implements the Processing Layer. To get the local

neighbors, loop through ipAdEntIfIndex values. If the ASN1 value is a valid IP
address, set the local neighbor tags for local neighbor IP address and ifIndex.
Set tags for the netMask and physaddress based on the corresponding values in
ipAdEntIfIndex and ifAdEntNetMask.
To get the remote neighbors, start looping through the ipRouteType. The
progam processes only if the route type is not 2 and the ASN1 value is a valid
IP address. Then get the corresponding value of the next hop. Make it a remote
neighbor if it is not a local neighbor IP address and the remote IP address does
not already exist. Use the ipRouteIfIndex values to find the local neighbor to
attach this remote neighbor to.

5. Add local neighbors to device record m_IpAddress, m_IfIndex, and m_NetMask.
6. This section of code determines and adds remote neighbors.
sub GetValueForKey �1�
{
my $refArray = shift;
my $key = shift;

Chapter 2. Writing discovery agents 29

for (my $jj=0; $jj<=$#$refArray; $jj++)
{

if ($refArray->[$jj]->{ASN1} eq $key)
{
return $refArray->[$jj]->{VALUE};
}

}
return 0;
}

sub NotLocalNbr �2�
{
my $ip_in = shift;
@lN = $TestNE->GetLocalNeighbours();
foreach $l_nbr (@lN)
{

print "RMAA $l_nbr->{m_IpAddress}, $ip_in, \n";
if ($l_nbr->{’m_IpAddress’} eq $ip_in)
{
print "remote neighbour IP same as local neighbour IP \n";
return 0;
}

my @remoteN = $TestNE->GetRemoteNeighbours($l_nbr);
print @remoteN, "\n";
foreach my $remoteNbr (@remoteN)
{

print "$remoteNbr->{’m_IpAddress’}, $ip_in, \n";
if ($remoteNbr->{’m_IpAddress’} eq $ip_in)
{

print "remote neighbour IP already exists \n";
return 0;

}
}
}
return 1;
}

The following list explains specific numbered items in the previously listed IP
routing discovery agent Perl program:
1. This section of code returns a value corresponding to the key from an array of

varOps.
2. This section of code checks if the remote IP is the same as the local neighbor.
sub AttachLocalNbr �1�
{
my $refR = shift;
my $index = shift;
foreach $lnbr (@localN)
{

if ($lnbr->{’m_IfIndex’} eq $index)
{

print $lnbr->{’m_IfIndex’}, $index, "\n";
print "$lnbr->{’m_IpAddress’}connected to $refR->{m_IpAddress}\n";
$TestNE->AddRemoteNeighbour($lnbr, $refR);

}
}

}

The following list explains specific numbered items in the previously listed IP
routing discovery agent Perl program:
1. This section of code finds the appropriate local neighbor to connect the remote

neighbor to.

30 IBM Tivoli Network Manager IP Edition: Perl API Guide

Prototype agent definition file template
A discovery agent requires a discovery agent definition file ($NCHOME/precision/
disco/agents/*.agnt), regardless of whether the agent is text-based or
precompiled. Items that can be defined in this file include when and from where
the discovery agent can be run; a list of devices that should be sent to the
discovery agent; and the discovery phase at which the discovery agent should
complete.

The following is a discovery agent definition file template with required and
optional fields. Use this template to create the *.agnt file to be associated with your
discovery agent. Explanations of specific lines follow the example.

Note: Where parsing errors occur, the discovery agent definition file rule will be
ignored or the default behavior will be assumed.

See the IBM Tivoli Network Manager IP Edition Discovery Guide for more information
on the discovery agent definition file and its associated keywords.
--

-- The following fields are used to initialize the config GUI
-- and update DiscoAgents.cfg when the agent is first installed
-- The DiscoAgentDescription keyword provides a way to describe
-- the discovery agent. The CustomPerlAgent is used as an example.
DiscoAgentDescription("Agent description goes here.");

DiscoAgentGUILocked(0);
DiscoAgentClass(0);
DiscoAgentIsIndirect(0);
DiscoAgentPrecedence(2);
DiscoAgentEnabledByDefaultOnPartial(0);
DiscoAgentEnabledByDefault(0);
DiscoAgentDefaultThreads(1);

-- Discovery agent type section
DiscoCompiledAgent
{
--
-- Optional "ncp_ctrl" information section
--
-- DiscoExecuteAgentOn("<Machine Name>");
--
-- Devices that should be sent to this agent section
--
DiscoAgentSupportedDevices
(
"Filter Expression"
);
-- Agent completion phase section
--
DiscoAgentCompletionPhase(n);

-- Mediation filter section
--

DiscoAgentMediationFilter
{
// Optional section containing filters for the mediation layer.
}
}

The following list explains specific items in the Agent Definition File template:
v Discovery agent type section

Chapter 2. Writing discovery agents 31

Specifies the agent type. The template specifies the keyword DiscoCompiledAgent
that denotes a compiled discovery agent. This compiled agent has a
corresponding shared library in the $NCHOME/precision/lib directory. Possible
other values include DiscoDefinedAgent and DiscoCombinedAgent.
This section is required.

v Optional "ncp_ctrl" information section

Specifies ncp_ctrol information. This control information defines when and from
what server or computer the discovery agent is to be run. If this line is omitted,
the discovery agent will be run on the same server or computer as the DISCO
process. Replace Machine Name with the name of the server or computer on
which the discovery agent is to be run.
This section is optional.

v Devices that should be sent to this agent section

Specifies the devices that should be sent to the discovery agent. Replace "Filter
Expression" with valid values that include a range or list of IP addresses to
include or exclude, along with a range or list of OIDs to include or exclude. The
default is ALL.
This section is required.
The following is an example:
DiscoAgentSupportedDevices
(
"(
m_ObjectId LIKE ’1\.3\.6\.1\.4\.1\.9\.5\.’
)
OR
(
(
m_ObjectId LIKE ’1\.3\.6\.1\.4\.1\.9\.1\.’
)
AND
(
m_Description NOT LIKE
’IOS \(tm\) C2900XL Software \(C2900XL-C3H2S-M\),

Version 12.0\(5.3\)WC\(1\), MAINTENANCE INTERIM SOFTWARE’
AND
m_ObjectId <> ’1.3.6.1.4.1.9.1.576’
AND
m_ObjectId <> ’1.3.6.1.4.1.9.1.577’
AND
m_ObjectId <> ’1.3.6.1.4.1.9.1.577’
AND
m_ObjectId <> ’1.3.6.1.4.1.9.1.619’

)
)"
);

v Agent completion phase section

Specifies at which of the n discovery phases should this discovery agent
complete.
This section is required.
The following example shows that the discovery agent should complete at phase
3:
--
-- During which of the n discovery phases should this agent complete?
--
DiscoAgentCompletionPhase(3);

v Mediation filter section

32 IBM Tivoli Network Manager IP Edition: Perl API Guide

Specifies the mediation layer, which contains, among other items, an optional
filter on the mediation layer.

Using threads in discovery agents
Discovery agents written in Perl can experience slow performance because the data
retrieved for each device operating in the network is retrieved within a single
thread. Thus, the discovery agent spends much of its time idle, waiting for data to
be retrieved from a device. The RIV::Agent module provides a multithreading
capability that improves the performance of discovery agents.

The following topics provide information about the RIV::Agent module
multithreading capability.

Note: Although Perl itself supports execution of multiple threads, many of the
add-on CPAN modules often used with Perl are not thread safe. This means that
Perl discovery agents using CPAN modules may need to be restricted to a single
thread.

The RIV::Agent::LockThreads and RIV::Agent::UnLockThreads methods might
enable you to use third party Perl modules. These methods allow you to restrict
access to a section of a discovery agent to a single thread.

Discovery agent threads example
To overcome the slow performance of discovery agents written in Perl, the
RIV::Agent module provides a multithreading capability. This capability allows
you to serialize execution of specific sections of a discovery agent.

The following example calls the LockThreads method to serialize execution of
specific sections of a discovery agent:
#

Begin a serialised section of execution within the Perl agent
#
$agent->LockThreads();

#
It is important not to have any fatal errors that could prevent the
threads getting unlocked again so wrap the following in an eval block.
#
eval
{

... only one agent thread executing here at any given time ..
}
if ($@)
{

warn "Error: $@\nWhen executing serialised block\n";
}

#
Unlock to allow other threads a chance to execute the above section
#
$agent->UnLockThreads();

Note: It may be possible to use a non-thread safe Perl module within such a
serialized section of the discovery agent. However, no guarantees can be made and
results may vary with different modules. So if the results are not successful then
the discovery agent may still need to be restricted to a single thread.

Chapter 2. Writing discovery agents 33

Default number of threads
The default number of threads for a Perl discovery agent is defined within its
agent definition file.

The number of threads that a Perl discovery agent should use is defined in exactly
the same way as that for normal discovery agents, by modifying the m_NumThreads
attribute in the DiscoAgents.cfg configuration file. The default number of threads
for a Perl discovery agent is specified in the agent's definition file as follows:
DiscoAgentDefaultThreads(10);

Note: In order for a Perl discovery agent to use multiple threads, a
DiscoAgentDefaultThreads entry must be defined in its agent definition file. If such
an entry does not exist, then the value of the m_NumThreads attribute in the
DiscoAgents.cfg configuration file will be ignored.

34 IBM Tivoli Network Manager IP Edition: Perl API Guide

Chapter 3. Accessing component databases

Network Manager IP Edition provides component databases that store specific
categories of information. Each component schema can consist of one or more
databases and each database one or more tables. For example, the ncp_class
database consists of one database and three tables. You use the RIV::OQL Perl API
module to access or modify records in these component databases.

To access or modify records in the Network Manager IP Edition component
databases, you use the RIV::OQL Perl API module. Typically, you will also make
use of the RIV::App and RIV::Param Perl API modules.

See the IBM Tivoli Network Manager IP Edition Management Database Reference
(SC27-2767-00) for information about the component databases you can access with
the RIV::OQL module.

Object Query Language
Object Query Language (OQL) is a version of the Structured Query Language
(SQL) that has been designed for use in Network Manager IP Edition. The
components create and interact with their databases using OQL.

Use OQL to create new databases or insert data into existing databases (to
configure the operation of Network Manager IP Edition components) by amending
the component schema files. You can also issue OQL statements using the OQL
Service Provider, for example, to create or modify databases, insert data into
databases and retrieve data.

For more information about the OQL schema used by Network Manager IP
Edition, see the IBM Tivoli Network Manager IP Edition Management Database
Reference.

The OQL Service Provider is described in the IBM Tivoli Network Manager IP Edition
Administration Guide.

Differences between OQL and Structured Query Language
Network Manager IP Edition uses OQL to transfer data between and communicate
with its internal databases. OQL is an object-based version of Structured Query
Language (SQL) that was designed specifically around the operational needs of the
Network Manager IP Edition architecture.

The following items identify the main differences between OQL and SQL:
v OQL has the ability to support object referencing within database tables. Thus,

it is possible to have objects nested within objects.
v Not all SQL keywords are supported within OQL. Thus, irrelevant keywords

have been removed for the OQL syntax.

Note: Before using the Perl API to access the component databases, make sure
you understand the available component databases and the Object Query
Language. See IBM Tivoli Network Manager IP Edition Management Database Reference
(SC27-2767-00) for details related to the component databases. See IBM Tivoli

© Copyright IBM Corp. 2006, 2012 35

Network Manager IP Edition Language Reference (SC27-2768-00) for details related to
the Object Query Language.

Actions that can be performed on component databases
The Perl API provides utilities that allow you to query any of the Network
Manager IP Edition component databases and to retrieve and control the
information stored in them.

The RIV::OQL Perl API module allows you to perform operations on the
component databases, including:
v Inserting new entries into the component databases
v Modifying existing device attributes
v Deleting entries from the component databases

To access a particular component database, the service in which the database
resides must be running. For example, if you want to access a component database
that resides in DISCO, ncp_disco must be running. Likewise, to access a CLASS
database, ncp_class must be running. For a full listing of services to which you can
connect, see “RIV::OQL Constructor” on page 97.

After you create a RIV::OQL object based on a selected service, you can perform
one of four actions on a component database:
v SELECT
v INSERT
v UPDATE
v DELETE

A SELECT statement returns records, while the other statements do not return any
records.

The RIV::OQL module allows you to:
v Access retrieved records using the RIV::GetResult method.
v Print these retrieved records using the RIV::OQL::Print method.
v Create new databases and tables with the RIV::OQL::CreateDB and

RIV::OQL::CreateTable methods.

In addition to the previously described convenience methods, you can use the
RIV::OQL::Send($statement, $returnResults) method, where $statement is any
valid OQL statement, and $returnResults equals:
v 1 — For queries that return results. For example, select and show.
v 0 — For queries that do not return results. For example, insert.

36 IBM Tivoli Network Manager IP Edition: Perl API Guide

Example Perl scripts that operate on component databases
Use the following examples as guides to writing Perl scripts that access the
Network Manager IP Edition component databases.

The oql_example.pl example script
The oql_example.pl script demonstrates the use of Perl to parse the /etc/hosts file
and input any devices listed therein into the finders.despatch database, providing
the IP address listed is valid.

The oql_example.pl script uses some of the methods provided in the RIV::Param
and RIV::OQL Perl API modules. The example is divided into two sections: lines
1-15 and lines 16-33. Explanations follow lines 1-15 and lines 16-33.
#!/opt/netcool/precision/Solaris2/bin/ncp_perl
1 use strict;
2 use RIV;
3 use RIV::Param;
4 use RIV::App;
5 use RIV::OQL;
6
7 my $param = new RIV::Param() or
8 die "RIV::Param::new failed";
9
10 my $app = new RIV::App($param, "ncp_test:oql") or
11 die "Can’t create RIV application session";
12
13 my $oql = new RIV::OQL($app, "Disco") or
14 die "Can’t create RIV OQL session";
15

The following list explains specific numbered items in the previously listed Perl
script example:
v Lines 1-5

Declare the Perl API modules to use in the oql_example.pl script. This script
makes use of the RIV, RIV::Param, RIV::App, and RIV::OQL modules. The
oql_example.pl script also makes use of the use strict pragma. The use strict
pragma enforces good programming practices, including enforcing the
declarations of any new variables with my.

v Lines 7-8

Creates and initializes a new Param object. If the Param object cannot be created
the script stops. In this call to the RIV::Param constructor, no arguments are
specified. This means that there are no application-specific command line
arguments. However, the standard command line arguments that the RIV::Param
module provides are available once the Param object is created.

v Lines 10-11

Creates a new client/server application object using the RIV::App constructor.
This call to the RIV::App constructor takes two parameters:
– RIV::Param — Specifies a RIV::Param object reference. This object was

returned to $param by the RIV::Param constructor.
– $progname — Specifies a string that uniquely identifies this application. By

convention, the application name should start with ncp_. In the example, the
specified application name is ncp_test:oql.
If the client/server application object cannot be created, the script stops.

v Lines 13-14

Chapter 3. Accessing component databases 37

Creates a new OQL object on the service type Disco. If the OQL object fails to
create, the script stops.

16 open (INPUT, "/etc/hosts")
17 or die "Could not open /etc/hosts: $!\n":
18 my $number_records =0;
19 my $finder = "PerlFileFinder";
20 my $sep = "’";
21 my $stat;
22 while (<INPUT>){
23
24 next if (/^#/ or /^--/);
25 my ($ipadd, $ipname)= /^(\S+)\s+(\S+)/;
26
27 if (RIV::IsIpValid($ipadd)){
28 my %record = (m_Creator => $sep.$finder.$sep, m_Name =>

$sep.$ipname.$sep, m_IpAddress => $sep.$ipadd.$sep,);
29 $oql->Insert(’finders’, ’despatch’, \%record);
30 $number_records ++;
31 }
32 }
33 print STDOUT "Number of Records input = ", $number_records;

v Line 16

Opens and reads the file /etc/hosts using the name INPUT as a file handle.
v Lines 18-21

Initializes variables.
v Line 24

Ignores lines beginning with # or -- characters.
v Line 25

Browse each line and get the IP address and name, filtering out any spaces in
between.

v Line 27

Checks the validity of the IP address.
v Line 28

If the IP address is valid, the value pairs m_Creator, m_Name, and m_IpAddress are
put in the %record hash.

v Line 29

Inserts the record in the despatch table of the finders database.
v Line 33

After the loop completes, prints to standard output the number of records input
into the finders.despatch table. The finders database is defined in the
DiscoSchema.cfg file.
See the IBM Tivoli Network Manager IP Edition Discovery Guide (SC27-2762-00) for
information about the finders database.

38 IBM Tivoli Network Manager IP Edition: Perl API Guide

OQL example script
The OQL example script shows how to create an OQL session and perform several
operations on the MODEL database.

The example is divided into two sections: lines 1-26 and lines 27-48. Explanations
follow lines 1-26 and lines 27-48.
$PRECISION_HOME/bin/ncp_perl
1 use RIV;
2 use RIV::Param;
3 use RIV::App;
4 use RIV::OQL;
5
6 my $param = new RIV::Param()
7 or die "RIV::Param::new failed";
8
9 my $app = new RIV::App($param, "ncp_test:oql");
10 or die "Can’t create RIV application session";
11
12 my $oql = new RIV::OQL($app, "Model");
13 or die "Can’t create RIV OQL session";
14
15 my $stat =’insert into master.entityByName (EntityName, Description,
ClassName) values ("bar", "This is a switch", "Switch");’;
16 $oql->Send($stat, 0);
17
18 $stat = ’select * from master.entityByName;’;
19 $oql->Send($stat);
20 my ($type, $data) = $oql->RIV::GetResult(10);
21 $oql->Print($data);
22
23 $oql->Select(’master’, ’entityByName’, ’ALL’);
24 ($type, $data) = $oql->RIV::GetResult(10);
25 $oql->Print($data);
26

The following list explains specific numbered items in the previously listed Perl
script example:
v Lines 1-4

Declare the Perl API modules to use in the OQL example script. This script
makes use of the RIV, RIV::Param, RIV::App, and RIV::OQL modules.

v Line 6

Reads and parses the command line. The standard arguments are hidden.
v Lines 9-10

Creates a new RIV application object. If the creation of this object fails, the script
stops.

v Lines 12-13

Creates an OQL object with service Model. If the creation of this object fails, the
script stops.

v Lines 15-16

Inserts a record into MODEL using the Send method.
v Lines 18-19

Determines what records there are in the MODEL database using the Send
method.

v Lines 20-21

Gets and prints the records.
v Lines 23-25

Chapter 3. Accessing component databases 39

Determines what records there are in the MODEL database using the Select
method.

27 $oql->Delete(master, entityByName, "ClassName = ’Switch’");
28
29 my %insert_rec;
30 $insert_rec{EntityName} = "’foo’";
31 $insert_rec{Description} = "’This is a router’";
32
33 $oql->Insert(’master’, ’entityByName’, \%insert_rec);
34
35 $oql->Select(’master’, ’entityByName’, ’ALL’);
36 ($type, $data) = $oql->RIV::GetResult(10);
37 $oql->Print($data);
38
39 $oql->CreateDB("PerlDB");
40
41 my %table_columns = (m_IpAddress=> "text", m_Name=> "text");
42 $oql->CreateTable("PerlDB", "PerlTable", \%table_columns);
43 my %dummy_entry = ("m_IpAddress"=> "’8.9.10.11’", "m_Name" => "’dummy’");
44 $oql->Insert(’PerlDB’, ’PerlTable’, \%dummy_entry);
45
46 $oql->Select(’PerlDB’, ’PerlTable’, ’m_Name’);
47 ($type, $data) = $oql->RIV::GetResult(10);
48 $oql->Print($data);

The following list explains specific numbered items in the previously listed Perl
script example:
v Line 27

Deletes the record using the Delete method.
v Lines 29-34

Inserts a new record.
v Lines 35-37

Checks if the records were deleted or inserted.
v Line 39

Creates a database called PerlDB.
v Lines 41-42

Creates a table in the PerlDB with columns m_IpAddress and m_Name.
v Lines 43-44

Inserts a record into the PerlDB database.
v Lines 46-48

Selects the entries in the user defined database to verify that the database table
has been created and the record inserted.

40 IBM Tivoli Network Manager IP Edition: Perl API Guide

Chapter 4. Performing SNMP queries

The RIV::SnmpAccess module allows client/server scripts that use the Perl API to
retrieve SNMP information from a network device through the SNMP helper.

To write client/server Perl scripts that retrieve SNMP information from network
devices you typically use the RIV::Param, RIV::App, and RIV::SnmpAccess modules.

Note: Discovery agent Perl scripts should not use the RIV::SnmpAccess module.
Discovery agent Perl scripts use the RIV::Agent module, which provides its own
methods to perform SNMP operations through the SNMP helper.

Using get methods to obtain SNMP information from a device
The Perl API, specifically the RIV::SnmpAccess module, provides a number of get
methods for retrieving SNMP information from a particular device. You can make
these get SNMP information requests either synchronously or asynchronously
because the RIV::SnmpAccess module provides both synchronous and
asynchronous versions of these get methods.

The following table summarizes which methods to call in a client/server Perl
script.

Synchronous/asynchronous
method Description

Level of SNMP information
accessed

SnmpGet and AsyncSnmpGet The caller specifies a valid IP
address for the particular
device and the MIB variable
of interest. These methods
return the specified MIB
variable for the specified
device.

These methods retrieve a
single MIB variable. If you
pass a MIB table (instead of
a single MIB variable) to
these methods, only the first
entry in this MIB table is
returned.

SnmpGetNext and
AsyncSnmpGetNext

The caller specifies a valid IP
address for the particular
device and a MIB table of
interest. These methods
return the specified MIB
table for the specified device.

These methods retrieve an
entire MIB table that contains
multiple variables (for
example, ifTable).

SnmpGetBulk and
AsyncSnmpGetBulk

The caller specifies a valid IP
address for the particular
device and the MIB variables
of interest. These methods
return the specified MIB
variables for the specified
device.

These methods retrieve
multiple MIB variables (for
example, ifDescr, ifType,
and ifSpeed).

© Copyright IBM Corp. 2006, 2012 41

Making synchronous and asynchronous SNMP get requests
The Perl API provides two ways to make SNMP get requests: synchronous and
asynchronous. You make these SNMP get requests by calling the get request
methods that the RIV::SnmpAccess module provides.

The following list briefly describes the two ways to perform SNMP get requests:
v Synchronous — Each successive transmission of data requires a response to the

previous transmission before a new one can be initiated.
v Asynchronous — Each transmission of data proceeds independently until one

transmission needs to interrupt another one with a request.

When writing a client/server Perl script that makes a synchronous SNMP GET
request, the request is made and the caller will not be able to perform other tasks
until the specified MIB variable has been retrieved. The information that is
returned will have an attached tag so that you know what it is referring to. The
tag will be whatever you have specified it to be in the synchronous get method.

Unlike a synchronous SNMP GET request, an asynchronous SNMP GET request is
multithreaded. Thus, you are free to perform other tasks while waiting for a
response when using an asynchronous SNMP GET request. In the Perl API, the
caller can specify the number of threads. When retrieving SNMP information from
a large device, use 10 threads.

Example SNMP GET access script
The SNMP GET access example Perl script shows how to retrieve SNMP
information using several of the SNMP get methods — both synchronous and
asynchronous — that the RIV::SnmpAccess module provides. Use this example as a
model for writing your own client/server Perl scripts that retrieve SNMP
information for specific devices from a single MIB variable, multiple MIB variables,
and a MIB table.

Declare Perl API modules and variables
This section of the SNMP GET access example Perl script declares the Perl API
modules to be used as well as a number of variables. Use this part of the example
script as a guide to setting up client/server Perl scripts that will retrieve SNMP
information.

The SNMP GET access example Perl script declares the Perl API modules to be
used and a number of variables as follows:
#!$NCHOME/bin/ncp_perl
1 use strict;
2 use RIV;
3 use RIV::Param;
4 use RIV::App;
5 use RIV::SnmpAccess; # qw (RivSnmpResultOk);
6
7 $RIV::SnmpAccess::MaxAsyncConcurrent = 40;
8
9 my $Ttype = "TEST";
10
11 my $Verbose;
12 my @_Usage = ("node" [async]);
13

42 IBM Tivoli Network Manager IP Edition: Perl API Guide

The following list explains specific numbered items in the previously listed section
of the SNMP GET access Perl script example.
v Line 1

Declares the strict pragma with the use directive. The strict pragma enforces
good programming practices, including enforcing the declarations of any new
variables with my.

v Lines 2-5

Specify the use directive to declare the Perl API modules to be used. In this case,
use the RIV, RIV::Param, RIV::App, and RIV::SnmpAccess modules.

v Line 7

Sets the MaxAsyncConcurrent RIV::SnmpAccess module variable to the value 40.
This module variable sets the maximum number of concurrent asynchronous
SNMP get requests.

v Lines 9-12

Declare the following my variables:
– $Ttype — Stores a string that identifies whether the SNMP GET access is

synchronous or asynchronous. Later sections of the SNMP GET access
example script use this variable in calls to the print operator. The variable
gets set initially to the string TEST.

– $Verbose — Specifies how the script progress details are to be displayed. The
-v option displays verbose progress details. This variable is defined with the
RIV::Param module, specifically with the Usage method.

– @_Usage — Specifies the usage string suffixes node and async.

Create and initialize a RIV::Param object
This section of the SNMP GET access example Perl script creates and initializes a
new RIV::Param object. Use this part of the example script as a guide to creating
and initializing new RIV::Param objects in client/server Perl scripts that retrieve
SNMP information.

The SNMP GET access example Perl script creates and initializes a new RIV::Param
object as follows:
14 my $param = new RIV::Param({"-v"=> [$RIV::Param::NoArg, \$Verbose],},

\@_Usage) or
15 die "RIV::Param::new failed";
16
17 my $node = shift @ARGV;
18 my $what = shift @ARGV;
19 $what = "" unless defined $what;
20
21 $param->Usage(1) unless (defined $node && $node ne "");

The following list explains specific numbered items in the previously listed section
of the SNMP GET access Perl script example:
v Line 14

Creates and initializes a new RIV::Param object by calling the RIV::Param
constructor.

Note: The standard arguments (for example, -domain, -debug, and so forth) are
hidden.

v Line 15

Chapter 4. Performing SNMP queries 43

If the constructor fails to create and initialize the new RIV::Param object,
consider this a fatal error and call the die function. The die function prints out
an appropriate message (in this case, that the RIV::Param constructor failed) to
the standard error stream.

Create and initialize a RIV::App object
This section of the SNMP GET access example Perl script creates and initializes a
new RIV::App object. Use this part of the example script as a guide to creating and
initializing new RIV::App objects in client/server Perl scripts that retrieve SNMP
information.

The SNMP GET access example Perl script creates and initializes a new RIV::App
object as follows:
22 my $app = new RIV::App($param, "ncp_test:snmp") or

23 die "Can’t create RIV application session" unless (defined $app);

24

The following list explains specific numbered items in the previously listed section
of the SNMP GET access Perl script example:
v Line 22

Creates and initializes a new RIV::App object by calling the RIV::App constructor.
This call to the RIV::App constructor takes the following parameters:
– RIV::Param — Specifies a reference to a RIV::Param object. In this example,

the newly created RIV::Param object is returned to the my $param variable in a
previous call to the RIV::Param constructor.

– $progname — Specifies a string that uniquely identifies an application. In this
example, the application name is identified by the string ncp_test:snmp.

v Line 23

If the constructor fails to create and initialize the new RIV::App object, consider
this a fatal error and call the die function. The die function prints out an
appropriate message (in this case, that the RIV::App constructor failed) to the
standard error stream.

Create and initialize RIV::SnmpAccess object
This section of the SNMP GET access example Perl script creates and initializes a
new RIV::SnmpAccess object. Use this part of the example script as a guide to
creating and initializing new RIV::SnmpAccess objects in client/server Perl scripts
that retrieve SNMP information.

The SNMP GET access example Perl script creates and initializes a new
RIV::SnmpAccess object as follows:
25 my $snmp = new RIV::SnmpAccess($app) or

26 die "Can’t create RIV SNMP session";

27

The following list explains specific numbered items in the previously listed section
of the SNMP GET access Perl script example:
v Line 25

44 IBM Tivoli Network Manager IP Edition: Perl API Guide

Creates and initializes a new RIV::SnmpAccess object by calling the
RIV::SnmpAccess constructor. Upon successful completion, the RIV::SnmpAccess
constructor returns a RIV::SnmpAccess object to the my $snmp variable.
This call to the RIV::SnmpAccess constructor takes the following parameter:
– $rivSession — Specifies a reference to RIV::App object returned in a previous

call to the RIV::App constructor. In this example, the newly created RIV::App
object is returned to the my $app variable in a previous call to the RIV::App
constructor.

v Line 26

If the constructor fails to create and initialize the new RIV::SnmpAccess object,
consider this a fatal error and call the die function. The die function prints out
an appropriate message (in this case, that the RIV::Snmp constructor failed) to the
standard error stream.

Check the device IP address and node name
This section of the SNMP GET access example Perl script checks for the device's IP
address and node name. Use this part of the example script as a guide to writing
code that checks for a device's IP address and node name in client/server Perl
scripts that retrieve SNMP information.

The SNMP GET access example Perl script checks for a device's IP address and
node name as follows:
28 my $nodeIP = $node;

29 if ($node !~ /^\d+\.\d+\.\d+\.\d+$/) {

30 $nodeIP = gethostbyname($node);

31 $nodeIP = inet_ntoa($nodeIP) if (defined $nodeIP) or

32 die "Can’t find IP address for ’$node’";

33 }

34

The following list explains specific numbered items in the previously listed section
of the SNMP GET access Perl script example:
v Line 28

Assigns the value stored in the my $node variable to the my $nodeIP variable. The
my $node variable was set after the call to the RIV::Param constructor.
See “RIV::Param Constructor” on page 106 for more information.

v Line 29

Determines if an IP address or node (host) name was specified.
v Lines 30-31

Gets the IP address from the node name by calling the gethostbyname and
inet_ntoa functions.

v Line 32

If the defined function verifies that the value in $nodeIP is undef, consider this a
fatal error and call the die function. The die function prints out an appropriate
message (in this case, that the IP address for this device cannot be found) to the
standard error stream.

Chapter 4. Performing SNMP queries 45

Determine which SNMP GET requests to run
This section of the SNMP GET access example Perl script determines which SNMP
GET requests — synchronous or asynchronous — to run. Use this part of the
example script as a guide to writing code that sets up an appropriate condition to
run either the synchronous or asynchronous SNMP GET requests in client/server
Perl scripts that retrieve SNMP information.

The SNMP GET access example Perl script sets up a condition to run either the
synchronous or asynchronous SNMP GET requests as follows:
35 if ($what =~ /async/) {

36 $Ttype = "ASYNCTEST";

37 AsyncTests();

38 exit 0;

39 }
40
41 SyncTests();
42
43 exit 0;
44
45 ###

The following list explains specific numbered items in the previously listed section
of the SNMP GET access Perl script example:
v Lines 35-39

Checks the input parameter to determine if the asynchronous tests (using the
asyncrhonous SNMP GET requests) should be run.

v Line 41

By default, the synchronous tests (using the synchronous SNMP GET requests)
should be run.

Perform asynchronous SNMP GET requests
This section of the SNMP GET access example Perl script sets up the logic to run
the asynchronous SNMP GET requests. Use this part of the example script as a
guide to writing code that makes use of some of the asynchronous SNMP GET
requests in client/server Perl scripts that retrieve SNMP information.

The SNMP GET access example Perl script sets up the logic and runs the
asynchronous SNMP GET requests as follows:
46 sub AsyncTests {
47
48 my $sTag = "GETNEXT_$node";
49 print "$Ttype: call AsyncSnmpGetNext($sTag, $nodeIP, ". "NULL,
ifDescr)\n" or
50 die "AsyncSnmpGetNext() failed";
51
52 my ($tag, $data) = $snmp->GetResult(-1) or
53 die "Unexpected tag ’$tag’";
54

55 foreach my $varop (@{ $data->[0] })
56 {
57 PrintVarOp($varop);
58 }
59
60 $sTag = "GET_$node";

46 IBM Tivoli Network Manager IP Edition: Perl API Guide

61 print "$Ttype: call AsyncSnmpGet($sTag, $nodeIP, NULL, "ifDescr" 2)\n"
or
62 die "AsyncSnmpGet() failed" ;
63
64 ($tag, $data) = $app->GetResult(-1) or
65 die "Unexpected tag ’$tag’" unless ($tag eq "SNMP_$sTag");
66
67 PrintVarOp($data->[0]);
68
69 }
70
71 ###

The following list explains specific numbered items in the previously listed section
of the SNMP GET access Perl script example:
v Lines 48-50

Performs an SNMP GETNEXT asynchronous request (by calling the
AsynchSnmpGetNext method).

v Lines 52-58

Receives the results, using the $snmp->RIV::GetResult() method, and then prints
these results.

v Lines 60-69

Performs an SNMP GET asynchronous request (by calling the AsynchSnmpGet
method). Receives the results using the $snmp->RIV::GetResult() method. Then
checks the tag and prints the results.

Perform synchronous SNMP GET requests
This section of the SNMP GET access example Perl script sets up the logic to run
the synchronous SNMP GET requests. Use this part of the example script as a
guide to writing code that makes use of some of the synchronous SNMP GET
requests in client/server Perl scripts that retrieve SNMP information.

The SNMP GET access example Perl script sets up the logic and runs the
synchronous SNMP GET requests as follows:
72 sub SyncTests {
73
74 print "$Ttype: call SnmpGetNext($nodeIP, NULL, ifDescr)\n";
75 my ($vap) = $snmp->SnmpGetNext($nodeIP, "", "ifDescr") or
76 die "SnmpGetNext on ifDescr table for ’$node’ failed";
77
78 foreach my $varop (@{ $vap })
79 {
80 PrintVarOp($varop);
81 }
82
83 print "$Ttype: call SnmpGet($nodeIP, NULL, ifDescr,1)\n";
84 $vap = $snmp->SnmpGet($nodeIP, "", "ifDescr",1) or
85 die "SnmpGetNext on ifDescr table for ’$node’ failed";
86
87 PrintVarOp($vap);
88
89 print "$Ttype: call SnmpGetBulk($nodeIP, NULL,\@oids,8,100)\n";
90 my @oids=(’sysDescr’, ’sysContact’, ’sysUpTime’, ’ipInReceives’,

’ipOutRequests’, ’ipOutDiscards’, ’ipForwDatagrams’,
’tcpCurrEstab’, ’ifDescr’);

91
92 ($vap) = $snmp->SnmpGetBulk($nodeIP, "", \@oids, 8, 100);
93 foreach my $varop (@{ $vap })
94 {
95 PrintVarOp($varop);

Chapter 4. Performing SNMP queries 47

96 }
97 }
98 ###

The following list explains specific numbered items in the previously listed section
of the SNMP GET access Perl script example:
v Lines 74-81

Performs an SNMP GETNEXT synchronous request (by calling the SnmpGetNext
method).

v Lines 83-87

Performs an SNMP GET synchronous request (by calling the SnmpGet method).
Receives the results, using the $snmp->RIV::GetResult() method, and then prints
these results.

v Lines 91-97

Performs an SNMP GETBULK synchronous request (by calling the SnmpGetBulk
method).

Print the SNMP varops
This section of the SNMP GET access example Perl script sets up the logic to print
the SNMP varops. Use this part of the example script as a guide to writing code
that prints the SNMP varops in client/server Perl scripts that retrieve SNMP
information.

The SNMP GET access example Perl script sets up the logic to print SNMP varops
as follows:
99 sub PrintVarOp {
100 my ($vp) = @_;
101
102 my $asn1 = $vp->{ASN1};
103 my $value = $vp->{VALUE};
104 my ($oid, $index, $name) = $snmp-> SplitOidAndIndex ($asn1);
105 print "$Ttype: $name.$index = $value\n";
106 }

The following list explains specific numbered items in the previously listed section
of the SNMP GET access Perl script example:
v Lines 99-106

Prints the SNMP varops.

48 IBM Tivoli Network Manager IP Edition: Perl API Guide

Chapter 5. Writing and integrating Perl applications with
third-party products

The Perl API allows you to write Perl applications (for example, Listeners) that you
can then integrate with third-party products.

Listener applications
A Listener is an application written for a specific Network Manager IP Edition
database. The purpose of a Listener is to "listen" and respond to record events that
occur in the associated database.

Record events in the database include updates to existing records, additions of new
records, and deletions of existing records. A Listener application can process these
record events in order to:
v Update an external database
v Send email to an appropriate administrator or end user based on the event type
v Integrate with a variety of third-party products or applications

Users of the Perl API can also make use of the mail modules (for example,
Mail::Mailer) to email database record events. Listener applications, through the
RIV::OQL module, can send a stream of data into HTML, CGI scripts, and XML
data.

Note: Communication with external databases — such as, Oracle® or Sybase® —
can be done using the Perl DBI module.

In the record received from the Listener there is a tag for Action Type that defines
the action performed. For example, a record returned with an action type of 2
indicates that the listener had picked up a record deletion. The actions are
summarized in the table below.

Table 1. Listener actions

Tag Action

0 Insert

1 Update

2 Delete

Note: The listener must be associated with a subject. For example, to listen to
events the subject must be ITNM/EVENT/NOTIFY.

© Copyright IBM Corp. 2006, 2012 49

Example Listener script
The Listener example script shows how to "listen" to record insertions, deletions,
and updates in the MODEL topology database. Use this example as a model for
writing your own Listener applications using the Perl API.

Declare Perl API modules and variables for Listener
This section of the Listener example script declares the Perl API modules to be
used. Use this part of the example script as a guide to declaring the Perl modules
used with Listener applications.

The Listener example script declares the Perl API modules to be used as follows:
1 use RIV;
2 use RIV::Param;
3 use RIV::App;
4

The following list explains specific numbered items in the previously listed section
of the Listener Perl script example:
v Lines 2-5

Declare the Perl API modules to be used with the use directive, specifically, RIV,
RIV::Param, and RIV::App.

Create and initialize a RIV::Param object for Listener
This section of the Listener example script creates and initializes a new RIV::Param
object. Use this part of the example script as a guide to creating and initializing
new RIV::Param objects in Listener applications.

The Listener example script creates and initializes a new RIV::Param object as
follows:
5 $param = RIV::Param::new();

The following list explains the specific numbered item in the previously listed
section of the Listener Perl script example:
v Line 5

Creates and initializes a new RIV::Param object by calling the RIV::Param
constructor. Upon successful completion, the RIV::Param constructor returns a
RIV::Param object to the $param variable. This RIV::Param object is then passed
as a parameter to the RIV::App constructor.

Create and initialize a RIV::App object for Listener
This section of the Listener example script creates and initializes a new RIV::App
object. Use this part of the example script as a guide to creating and initializing
new RIV::App objects in Listener Perl scripts.

The Listener example script creates and initializes a new RIV::App object as
follows:
6 $app = RIV::App::new($param, "model_listener");
7

The following list explains the specific numbered item in the previously listed
section of the Listener Perl script example:
v Line 6

50 IBM Tivoli Network Manager IP Edition: Perl API Guide

Creates and initializes a new RIV::App object by calling the RIV::App constructor.
This call to the RIV::App constructor takes the following parameters:
– RIV::Param — Specifies a reference to a RIV::Param object. In this example,

the newly created RIV::Param object is returned to the $param variable in a
previous call to the RIV::Param constructor.

– $progname — Specifies a string that uniquely identifies an application. In this
example, the application name is identified by the string model_listener.

Bind the RIV::App object to the message broker subject for
Listener

Network Manager IP Edition uses the message broker publish and subscribe
messaging system to enable processes to communicate with each other. This section
of the Listener example script binds the newly created RIV::App object to message
broker. Use this part of the example script as a guide to binding RIV::App objects
to message broker.

The Listener example script binds the newly created RIV::App object to message
broker as follows.

See the IBM Tivoli Network Manager IP Edition Administration Guide (SC27-2761-00)
for more information on message broker.
8 $ok = $app->RIV::AddSubject(’ITNM/MODEL/NOTIFY’,’model’);
9 print $ok, "\n";

The following list explains the specific numbered items in the previously listed
section of the Listener Perl script example:
v Line 8

Calls the AddSubject virtual method to bind the RIV::App object to message
broker. The AddSubject virtual method takes two parameters:
– $subject — Specifies the message broker subject to which the RIV::App object

binds. In this call, the message broker subject is ITNM/MODEL/NOTIFY.

Note: If you wanted the Listener application to listen to events, then
$subject would be ITNM/EVENT/NOTIFY.

– $tag — Specifies the tag to be appended to USER_, which describes the
message returned through the RIV::GetResult method. In this call, the tag is
model.

Upon successful completion, the AddSubject virtual method returns the value 1.
v Calls the print operator to print the value that the AddSubject virtual method

returns to the standard output.

Write database records to a log file
This section of the Listener example script sets up an appropriate loop for
"listening" to records inserted, deleted, or updated in the MODEL database and
then sending the information to a log file. Use this part of the example script as a
guide to setting up appropriate loops to capture record activity and then send this
activity to some log file in Listener Perl scripts.

The Listener example script sets up an appropriate loop for capturing record
activity in the MODEL database as follows:
10 open(LOGFILE, ">>model.log)";
11 while(1){
12 my ($tag, $data) = $snmp->GetResult(-1);

Chapter 5. Writing and integrating Perl applications with third-party products 51

13 foreach $key (@$data){
14 foreach $rec (keys %$key){
15 {
16 print LOGFILE "$rec : $key->{$rec}","\n";
17 }
18 }
19 }

The following list explains the specific numbered items in the previously listed
section of the Listener Perl script example:
v Line 10

Calls the open operator to open the file handle LOGFILE for output (or
appending) to the new (or existing) file model.log.

v Lines 11-16

Sets up a while loop that executes until all inserted, deleted, and updated
database records are processed and written to the model.log file.

Note: In Lines 11-16, the desired information is simply written to a log file (line
16). However, if you want to send the information to a third-party database
management application, such as Sybase or Oracle, or a trouble-ticketing system,
such as ClearQuest®, use the Perl DBI module. To accomplish this, replace line
16 with the DBI connect method and then send the information.

Send database records to different applications
This section of the Listener example script sets up an appropriate loop for
"listening" to records inserted, deleted, or updated in the MODEL database and
then sending the information to different applications using the Perl DBI module.
Use this part of the example script as a guide to setting up appropriate loops to
capture record activity and then sending that information to different applications
using the Perl DBI module.

The Listener example script sets up an appropriate loop for capturing record
activity in the MODEL database and then sending that information to an Oracle
database as follows:
1 use DBI;
.
.
.
16 $dbname = ’modelEntities’; $user = ’foo’;
17 $password = ’foobar’; $dbd = ’Oracle’;
18 $dbh = DBI->connect($dbname, $user, $password, $dbd);
19 . . .
20 . . .
21 $dbh->do($statement);

The following list explains the specific numbered items in the previously listed
section of the Listener Perl script example:
v Line 1

Declares use of the Perl DBI module. See the Perl DBI documentation for more
information.

v Lines 16-21

Sets up the appropriate code to send database information to the Oracle
database.

52 IBM Tivoli Network Manager IP Edition: Perl API Guide

Appendix A. RIV Modules Reference

Each RIV module provides constructors and methods used in the Perl scripts that
you implement to create custom discovery agent and other client/server
applications.

To implement Perl scripts using the RIV modules, you must be familiar with the
constructors and methods that each module provides. These constructors and
methods are described in manual (reference) page format.

RIV module reference
The RIV module is a container for a set of modules that support implementation of
Perl applications on IBM Tivoli Network Manager IP Edition.

The RIV module provides variables, functions, and virtual methods that the Perl
API application modules — RIV::Agent and RIV::App — use.

RIV module synopsis
The RIV module synopsis provides summary calls to the variable, functions, and
virtual methods that the RIV::Agent module and RIV::App module can use.

Synopsis
Load the RIV module.
use RIV;

Call the RIV::RivDebug function.
$RIV::DebugLevel;
RIV::RivDebug($lvl, $debugString);

Call the RIV::RivMessage function.
$RIV::MessageLevel;
RIV::RivMessage($msglvl, $messageString);

Call the RIV::RivError function.
RIV::RivError($class, @errorMessageStrings);

Call the RIV::InputQueueLength function.
$qlen = RIV::InputQueueLength();

Call the RIV::GetResult function. Note the optional $waitTime
parameter. Note also that $rivSession stores the application object
returned in a previous call to the RIV::Agent or RIV::App constructor.
($tag, $value, $domain) = RIV::GetResult($waitTime);
($tag, $value, $domain) = $rivSession->RIV::GetResult([$waitTime]);

Call the RIV::GetResultSet function. Note the optional $waitTime parameter.
$rsKey = $rivSession->RIV::GetResultSet([$waitTime]);

Call the RIV::InputFilter function.
$ok = RIV::InputFilter($pattern, $function);

Call the PostInput virtual method. Note that $rivSession stores
the application object returned in a previous call to the RIV::Agent
or RIV::App constructor.
$ok = $rivSession->PostInput($tag, $data);
Call the DecryptPassword and EncryptPassword virtual methods.
$txtPwd = RIV::DecryptPassword($encPwd);

© Copyright IBM Corp. 2006, 2012 53

$encPwd = RIV::EncryptPassword($txtPwd);

Call the RIV::ReadDir function.
$fileListArrayRef = RIV::ReadDir($dirName);

Call the Latency and Retry Limit virtual methods. Note the optional
parameters. Note also that $rivSession stores the application object
returned in a previous call to the RIV::Agent or RIV::App constructor.
$latency = $rivSession->Latency([$timeoutMilliSeconds]);
$retryLimit = $rivSession->RetryLimit([$retryLimit]);

Call the two versions of the PublishMessage virtual methods. Note that
$rivSession stores the application object returned in a previous call
to the RIV::Agent or RIV::App constructor.
$ok = $rivSession->PublishMessage($subject, $message);
$ok = $rivSession->PublishMessage($subject, $refHash);

Call the AddSubject and AddTimer virtual methods. Note that
$rivsession stores the application object returned in a previous
call to the RIV::Agent or RIV::App constructor.
$ok = $rivSession->AddSubject($subject, $tag);
$ok = $rivSession->AddTimer($timerval, $tag, $isRepeat);

AddSubject
The AddSubject virtual method binds the application to the specified message
broker subject.

Virtual Method Synopsis
AddSubject($subject, $tag)

Parameters

$subject
Specifies the message broker subject to which AddSubject binds the
application.

$tag Specifies the tag to be appended to "USER_".

Description

The AddSubject virtual method:
v Binds the application to the message broker subject specified in the $subject

parameter.
v Appends the tag specified in the $tag parameter to "USER_". The "USER_$tag"

messages are returned in a call to the RIV::GetResult() function.

The subject is automatically appended with the domain in order to limit messages
to purely those for the current domain.

Example Usage

The following example assumes a previous call to the RIV::App constructor, which
returns a client/server application object to $app. A call could also be made to the
RIV::Agent constructor, which returns a discovery agent application object
(typically, to $agent).
$ok = $app->AddSubject(’ITNM/MODEL/NOTIFY’, ’model’);

54 IBM Tivoli Network Manager IP Edition: Perl API Guide

Returns

Upon completion, the AddSubject virtual method returns:
v 0 (zero) — The attempt to bind the application to the message broker subject

was unsuccessful.
v 1 — The attempt to bind the application to the message broker subject was

successful.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95
v “RIV::RivDebug” on page 70
v “RIV::GetResult” on page 63

AddTimer
The AddTimer virtual method creates a single-shot or repeating timer.

Virtual Method Synopsis
AddTimer($timerVal, $tag, $isRepeat)

Parameters

$timerVal
Specifies the time interval, in milliseconds, between timer events.

$tag Specifies the tag to be appended to "USER_".

$isRepeat
Specifies the type of timer to create. The value 0 (zero) creates a single-shot
timer and the value 1 creates a repeating timer.

Description

The AddIimer virtual method:
v Creates a single-shot or repeating timer, depending on the value passed to the

$isRepeat parameter. The value of the $timerVal parameter specifies the interval,
in milliseconds, between the timer events.

v Appends the tag specified in the $tag parameter to "USER_". The timer events
are returned to the Perl application as "USER_$tag" messages through a call to
the RIV::GetResult function.

Example Usage

The following example assumes a previous call to the RIV::App constructor, which
returns a client/server application object to $app. A call could also be made to the
RIV::Agent constructor, which returns a discovery agent application object
(typically, to $agent).
$ok = $app->AddTimer(100, "TIMER", 1);

Returns

Upon completion, the AddTimer virtual method returns:
v 0 (zero) — The attempt to create a single-shot or repeating timer was

unsuccessful.

Appendix A. RIV Modules Reference 55

v 1 — The attempt to create a single-shot or repeating timer was successful.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95
v “RIV::RivDebug” on page 70
v “RIV::GetResult” on page 63

DebugLevel
The RIV module provides access to the global Network Manager IP Edition
debugging level setting through the $RIV::DebugLevel variable.

Variable Synopsis
$RIV::DebugLevel

Description

The RIV module provides access to the global Network Manager IP Edition
debugging level setting through the $RIV::DebugLevel variable. Changing the
value of this variable will affect all debugging output. The default value is 0 (zero).

Typically, you use this variable with the following RIV module function:
v RIV::RivDebug

See Also
v “RIV::RivDebug” on page 70

DecryptPassword
The DecryptPassword virtual method decrypts the specified encrypted password.

Synopsis
DecryptPassword($encPwd)

Parameters

$encPwd
Specifies the encrypted password to be decrypted.

Description

The DecryptPassword virtual method decrypts the encrypted password specified in
the $encPwd parameter. You previously encrypted this password in a call to the
EncryptPassword virtual method. Note that the encryption key must be the same as
that used to encrypt the original password.

Example Usage
$txtPwd = RIV::DecryptPassword($encPwd);

Returns

Upon completion, the DecryptPassword virtual method returns the plain text
password or undef if an error occurred.

56 IBM Tivoli Network Manager IP Edition: Perl API Guide

See Also
v “EncryptPassword”
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95

EncryptPassword
The EncryptPassword virtual method returns an encrypted representation of the
specified password.

Synopsis
EncryptPassword($txtPwd)

Parameters

$txtPwd
Specifies the plain text password to be encrypted.

Description

The EncryptPassword virtual method encrypts the plain text password specified in
the $txtPwd parameter.

Example Usage
$encPwd = RIV::EncryptPassword($txtPwd);

Returns

Upon completion, the EncryptPassword virtual method returns an encrypted and
ASCII encoded representation of the specified plain text password or undef if an
error occurred.

See Also
v “DecryptPassword” on page 56
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95

Latency
The Latency virtual method retrieves the timeout for queries.

Virtual Method Synopsis
Latency([$timeoutMilliseconds])

Parameters

$timeoutMilliseconds
Specifies the timeout, in milliseconds, for the queries. This is an optional
parameter and if omitted (that is, no timeout is specified) it returns the
value of the timeout.

Description

The Latency virtual method:

Appendix A. RIV Modules Reference 57

v Sets a timeout, in milliseconds, for queries if a timeout value is passed to the
$timeoutMilliseconds parameter. The value passed to $timeoutMilliseconds cannot
be the undef value.

v Returns the timeout, in milliseconds, for queries if the $timeoutMilliseconds
parameter is omitted (that is, no timeout is specified). If an acknowledgement is
not received within this time, further requests are sent up to the retry limit. (The
retry limit is specified in a call to the RetryLimit virtual method). If no
acknowledgement is received after (retry*timeout), an error is returned to the
caller.

Example Usage

The following examples assume a previous call to the RIV::App constructor, which
returns a client/server application object to $app. A call could also be made to the
RIV::Agent constructor, which returns a discovery agent application object
(typically, to $agent).

The following example shows a call with no $timeoutMilliseconds parameter
specified:
$latency = $app->Latency();

The following example shows a call with the $timeoutMilliseconds parameter
specified:
$app->Latency(1000);

Returns

Upon completion, the Latency virtual method returns the timeout, in milliseconds,
if the $timeoutMilliseconds parameter is omitted.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95
v “RetryLimit” on page 61
v “RIV::RivDebug” on page 70

MessageLevel
The RIV module provides access to the global Network Manager IP Edition logging
level setting through the $RIV::MessageLevel variable.

Variable Synopsis
$RIV::MessageLevel

Description

The RIV module provides access to the global Network Manager IP Edition logging
setting through the $RIV::MessageLevel variable. Changing the value of this
variable will affect all logging output.

Typically, you use this variable with the following RIV module function:
v RIV::RivMessage

58 IBM Tivoli Network Manager IP Edition: Perl API Guide

See Also
v “RIV::RivMessage” on page 71

PostInput
The PostInput virtual method adds a message to the queue.

Virtual Method Synopsis
PostInput($tag, $data)

Parameters

$tag Specifies the tag to be associated with the input message.

$data Specifies the data in the message.

Description

The PostInput virtual method adds the input message specified in the $data
parameter to the queue along with the associated tag specified in the $tag
parameter.

Example Usage

The following example assumes a previous call to the RIV::App constructor, which
returns a client/server application object to $app. A call could also be made to the
RIV::Agent constructor, which returns a discovery agent application object
(typically, to $agent).
$app = RIV::App::new(.......);
$app->PostInput("myTag", "test data");

Returns

Upon completion, the PostInput virtual method returns:
v 0 (zero) — The attempt to add the input message to the queue was

unsuccessful.
v 1 — The attempt to add the input message to the queue was successful.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95
v “RIV::RivDebug” on page 70

PublishMessage
The PublishMessage virtual method publishes the specified message string.

Virtual Method Synopsis
PublishMessage($subject, $message)

Parameters

$subject
Specifies the unqualified Network Manager IP Edition subject used for
message broker messaging.

Appendix A. RIV Modules Reference 59

$message
Specifies a valid ASCII message string.

Description

The PublishMessage virtual method publishes the message string specified in the
$message parameter on the subject specified in the $subject parameter. The value
specified in $subject must be unqualified, that is, it must be without the .DOMAIN
suffix. The message in $message must be a valid ASCII string.

Example Usage

The following example assumes a previous call to the RIV::App constructor, which
returns a client/server application object to $app. A call could also be made to the
RIV::Agent constructor, which returns a discovery agent application object
(typically, to $agent).
$ok = $app->PublishMessage(’ITNM/MODEL/QUERY’, "hello");

Returns

Upon completion, the PublishMessage virtual method returns:
v 0 (zero) — The attempt to publish the specified message was unsuccessful.
v 1 — The attempt to publish the specified message was successful.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::RivDebug” on page 70
v “PublishMessage”

PublishMessage
The PublishMessage virtual method encodes the hash reference into a message
broker message.

Virtual Method Synopsis
PublishMessage($subject, $refHash)

Parameters

$subject
Specifies the unqualified Network Manager IP Edition subject used for
message broker messaging.

$refHash
Specifies a reference to a hash that contains the message to be sent.

Description

The PublishMessage virtual method encodes the hash specified in the $refHash
parameter into a message broker message and publishes it on the subject specified
in the $subject parameter. The hash passed to $refHash may be nested. The value
passed to the $subject parameter must be unqualified, that is, it must be without
the .DOMAIN suffix.

60 IBM Tivoli Network Manager IP Edition: Perl API Guide

Note: The message type and contents must be what the consumer is expecting.
There is a chance that the core processes will SIGSEGV if they receive unexpected
data (for example, publishing a string message to a NOTIFY subject).

Example Usage

The following example assumes a previous call to the RIV::App constructor, which
returns a client/server application object to $app. A call could also be made to the
RIV::Agent constructor, which returns a discovery agent application object
(typically, to $agent).
my %gg; $gg{’foo’} = ’bar’; $gg{’color’} = ’red’;

$ok = $app->PublishMessage(’ITNM/MODEL/QUERY’, \%gg);

Returns

Upon completion, the PublishMessage virtual method returns:
v 0 (zero) — The attempt to encode the hash and publish the specified message

was unsuccessful.
v 1 — The attempt to encode the hash and publish the specified message was

successful.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::RivDebug” on page 70
v “PublishMessage” on page 59

RetryLimit
The RetryLimit virtual method sets the retry limit for queries or returns the
maximum number of retries for queries.

Virtual Method Synopsis
RetryLimit([$retryLimit])

Parameters

$retryLimit
Specifies the retry limit for a specified query. This is an optional parameter
and if omitted (that is, no retry limit is specified) it returns the maximum
number of retries.

Description

The RetryLimit virtual method:
v Sets a retry limit for queries if a value is passed to the $retryLimit parameter.
v Returns the maximum number of retries for a specified query if the $retryLimit

parameter is omitted (that is, no retry limit is specified).

Example Usage

The following examples assume a previous call to the RIV::App constructor, which
returns a client/server application object to $app. A call could also be made to the
RIV::Agent constructor, which returns a discovery agent application object
(typically, to $agent).

Appendix A. RIV Modules Reference 61

The following usage example shows a call with no $retryLimit parameter specified:
$retry = $app->RetryLimit();

The following usage example shows a call with the $retryLimit parameter specified:
$app->RetryLimit(5);

Returns

Upon completion, the RetryLimit virtual method returns the maximum number of
retries for a specified query if the $retryLimit parameter is omitted.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::RivDebug” on page 70

RIV::GetInput
The RIV::GetInput function has been deprecated by RIV::GetResult. The
documentation exists for historical purposes only.

Synopsis
RIV::GetInput($waitTime [,$pattern])

Parameters

$waitTime
Specifies the time, in seconds, to wait before returning. If $waitTime is
negative, RIV::GetInput waits forever for the response.

$pattern
Specifies the pattern of tags that the user is interested in. Only messages
with a matching tag will be returned. All other messages will be left in the
queue for retrieval at a later time. This parameter is optional.

Description

The RIV::GetInput function provides a mechanism for synchronizing a
single-threaded Perl application with the multithreaded Network Manager IP
Edition platform. There is currently no support for direct interface with Perl
threads.

The normal usage of RIV::GetInput takes a single parameter to specify the number
of seconds to wait for input before returning. A value of 0 (zero) means "do not
wait", and a negative value means "wait forever".

Because Network Manager IP Edition platform receives input either directly or
indirectly through message broker, the input data is placed on a FIFO together
with its identifying tag. One input item is returned for each call to RIV::GetInput.
Items are returned as an array of size 3 containing the item tag, item tag value,
and the application domain (that is, the domain string specified in the call to
RIV::App::new). For example:
($tag, $data, $domain) = RIV::GetInput(-1);

If there is only one active RIV::App, the domain value may be ignored. However, if
multiple RIV::App objects have been created, the value of $domain must be used to
determine the source of the input.

62 IBM Tivoli Network Manager IP Edition: Perl API Guide

Value types depend on the item returned and must be interpreted in the context of
the value of $tag. Tag values are either specified in a call to create the input stream
or are from a set of standard tags. User specified tags are returned from
RIV::GetInput with the prefix USER_. Standard tags include:
v QUERY — (RIV::OQL query results)
v UPDATE — (RIV::OQL updates)
v NE — (RIV::Agent)
v TIMEOUT — (all - wait time exceeded and no data)

The extended form of RIV::GetInput uses a second parameter ($pattern) to specify
a regular expression pattern for matching against input tag strings. Only data
items with matching tags will be returned. This form is useful for temporarily
suspending delivery of input to all but the wanted channel and has the effect of
taking input data items out of turn. Non-matching input tags are kept in the queue
and will be delivered in sequence when the standard form of RIV::GetInput is
used, or a matching pattern is specified to a subsequent call of the extended
version.

Example Usage
($tag, $data, $domain) = RIV::GetInput(-1);

Returns

Upon successful completion, the RIV::GetInput function returns:
v $tag — The tag associated with the message.
v $data — The data associated with the tag. The $data value could be a string or a

reference to any data structure and will be interpreted based on the $tag value.
v $domain — The domain name. This return will only be of interest if multiple

domains are running.

See Also
v “RIV::GetResult”

RIV::GetResult
The RIV::GetResult function provides the "standard" mechanism for synchronizing
a single-threaded Perl application with the multi-threaded Network Manager IP
Edition platform. There is currently no support for a direct interface with Perl
threads.

Synopsis
RIV::GetResult([$waitTime])

Parameters

$waitTime
Specifies the time, in seconds, to wait for input before returning. If
$waitTime is negative, RIV::GetResult waits forever for the response. This
is an optional parameter that defaults to the latency of the application.

Description

The typical call to the RIV::GetResult function takes a single parameter to specify
the number of seconds to wait for input before returning. A value of 0 (zero)

Appendix A. RIV Modules Reference 63

means "do not wait" and a value of minus one (-1) means "wait forever". The
$waitTime parameter is optional and, if it is not specified, it defaults to the latency
associated with the application.

As the Network Manager IP Edition platform receives input (either directly or
indirectly through message broker), the input data is placed on a FIFO basis,
together with its identifying tag. One input item is returned for each call to
RIV::GetResult. Items are returned as an array of size 3, containing the item tag,
its value and the application domain (that is, the domain string specified in a call
to the RIV::App::new() constructor). For example:
my ($tag, $data, $domain) = $app->RIV::GetResult(-1);

If there is only one active RIV::App, the domain value may be ignored. However, if
multiple RIV::App objects have been created, the value of $domain must be used to
determine the source of the input.

Value types depend on the item returned and must be interpreted in the context of
the value of $tag. Tag values are either specified in a call to create the input stream
or are from a set of standard tags. User specified tags are returned from
RIV::GetResult() with the prefix "USER_". The following example identifies the
standard tags:
OQLQuery (RIV::OQL query results)
OQLUpdate (RIV::OQL updates)
NE (RIV::Agent)
TIMEOUT (all - wait time exceeded and no data)

Example Usage

The following example assumes a previous call to the RIV::App constructor, which
returns a client/server application object to $app. A call could also be made to the
RIV::Agent constructor, which returns a discovery agent application object
(typically, to $agent).
($tag, $data, $domain) = $app->RIV::GetResult();
($tag, $data, $domain) = $app->RIV::GetResult(10);
($tag, $data, $domain) = $app->RIV::GetResult(-1);

Returns

Upon successful completion, the RIV::GetResult function returns:
v $tag — The tag associated with the message.
v $data — The data associated with the tag. The $data value could be a string or a

reference to any data structure and will be interpreted based on the $tag value.
v $domain — The domain name. This return will only be of interest if multiple

domains are running.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95
v “RIV::GetInput” on page 62
v “RIV::RivDebug” on page 70

64 IBM Tivoli Network Manager IP Edition: Perl API Guide

RIV::InputFilter
The RIV::InputFilter function binds the function referenced by $function to input
tags matching the regular expression $pattern.

Synopsis
RIV::InputFilter($pattern [,$function]
[,$arg])

Parameters

$pattern
Specifies the tag corresponding to the regular expression to which the filter
must be run.

$function
Specifies the function that will be executed if the input tag matches the
regular expression passed to the $pattern parameter. This parameter is
optional. If no function is specified, the existing callback for the pattern is
deleted.

$arg Specifies an argument to be passed to the function specified in the
$function parameter. This parameter is optional.

Description

The RIV::InputFilter function binds the function referenced by $function to input
tags matching the regular expression $pattern. Whenever the application program
calls the RIV::GetResult function and data with a matching tag is returned, the
corresponding function is called instead of a return from RIV::GetResult. If all
input tags match one of the patterns passed to RIV::InputFilter, the effect is as if
the original call to RIV::GetResult never returned. The called function must not
call RIV::GetResult. Calling the RIV::InputFilter function with a value of undef
for $function removes the filter.

Example Usage
$ok = RIV::InputFilter("NE", $method1);

Returns

Upon completion, the RIV::InputFilter function returns:
v 0 (zero) — The attempt to bind the function referenced by $function was

unsuccessful.
v 1 — The attempt to bind the function referenced by $function was successful.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95
v “RIV::GetResult” on page 63
v “RIV::RivDebug” on page 70

Appendix A. RIV Modules Reference 65

RIV::InputQueueLength
The RIV::InputQueueLength function returns the number of items waiting in the
application's input queue.

Synopsis
RIV::InputQueueLength()

Parameters

None

Description

The RIV::InputQueueLength function returns the number of items waiting in the
application's input queue, that is, the number of times RIV::GetResult would need
to be called in order to drain the queue.

Example Usage
$queue_length = RIV::InputQueueLength();

Returns

Upon successful completion, the RIV::InputQueueLength function returns the
number of items waiting in the application's input queue.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95
v “RIV::GetResult” on page 63
v “RIV::RivDebug” on page 70

RIV::IsIpNotLoopBackOrMulticast
The RIV::IsIpNotLoopBackOrMulticast function returns true if the address
parameter is a valid IP address, and not a loop back or multicast address.

Synopsis
RIV::IsIpNotLoopBackOrMulticast($ipAddress)

Parameters

$ipAddress
Specifies the IP address that must be checked for validity.

Description

The RIV::IsIpNotLoopBackOrMulticast function returns true if the address passed
to the $ipAddress parameter is a valid IP address, and not a loop back or multicast
address.

Example Usage
$result = RIV::IsIpNotLoopBackOrMulticast($ipAddress);

66 IBM Tivoli Network Manager IP Edition: Perl API Guide

Returns

Upon completion, the RIV::IsIpNotLoopBackOrMulticast function returns:
v 0 (zero) — The IP address is not valid or the IP address is a loop back or

multicast address.
v 1 — The IP address is valid.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95
v “RIV::RivDebug” on page 70

RIV::IsIpValid
The RIV::IsIpValid function returns true if the address parameter is a valid IP
address.

Synopsis
RIV::IsIpValid($ipAddress)

Parameters

$ipAddress
Specifies the IP address that must be checked for validity.

Description

The RIV::IsIpValid function returns true if the address passed to the $ipAddress
parameter is a valid IP address. More specifically, the function checks if $ipAddress
is a valid IPv4 or IPv6 address using the functions specific to those address
families.

Example Usage
$result = RIV::IsIpValid($ipAddress);

Returns

Upon completion, the RIV::IsIpValid function returns:
v 0 (zero) — The IP address is not valid.
v 1 — The IP address is valid.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95
v “RIV::IsIpv4Valid” on page 68
v “RIV::IsIpv6Valid” on page 68
v “RIV::RivDebug” on page 70

Appendix A. RIV Modules Reference 67

RIV::IsIpv4Valid
The RIV::IsIpv4Valid function returns true if the address parameter is a valid
IPv4 address.

Synopsis
RIV::IsIpv4Valid($ipAddress)

Parameters

$ipAddress
Specifies the IP address that must be checked for validity.

Description

The RIV::IsIpv4Valid function returns true if the address passed to the $ipAddress
parameter is a valid IPv4 address. More specifically, the function checks that the IP
address is of the form a.b.c.d and that each number in the IP address (a, b, c,
d) is less than 255.

Example Usage
$result = RIV::IsIpv4Valid($ipAddress);

Returns

Upon completion, the RIV::IsIpv4Valid function returns:
v 0 (zero) — The IP address is not valid.
v 1 — The IP address is valid.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95
v “RIV::IsIpValid” on page 67
v “RIV::IsIpv6Valid”
v “RIV::RivDebug” on page 70

RIV::IsIpv6Valid
The RIV::IsIpv6Valid function returns true if the address parameter is a valid
IPv6 address.

Synopsis
RIV::IsIpv6Valid($ipAddress)

Parameters

$ipAddress
Specifies the IP address that must be checked for validity.

Description

The RIV::IsIpv6Valid function returns true if the address passed to the $ipAddress
parameter is a valid IPv6 address. More specifically, the function checks that the IP
address is of the standard forms as defined in RFC429.

68 IBM Tivoli Network Manager IP Edition: Perl API Guide

Example Usage
$result = RIV::IsIpv6Valid($ipAddress);

Returns

Upon completion, the RIV::IsIpv6Valid function returns:
v 0 (zero) — The IP address is not valid.
v 1 — The IP address is valid.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95
v “RIV::IsIpValid” on page 67
v “RIV::IsIpv4Valid” on page 68
v “RIV::RivDebug” on page 70

RIV::ReadDir
The RIV::ReadDir function returns a reference to an array of filenames that reside
in the specified directory.

Synopsis
RIV::ReadDir($dirName)

Parameters

$dirName
Specifies the name of the directory to read.

Description

The RIV::ReadDir function returns a reference to an array of filenames that reside
in the directory specified in the $dirName parameter. The RIV::ReadDir function
provides the same functionality as the standard Perl readdir function. The
RIV::ReadDir function is supplied to accommodate known issues when trying to
use readdir with ncp_perl on some Linux platforms.

Example Usage
$fileListArrayRef = RIV::ReadDir($dirName);

Returns

Upon completion, the RIV::ReadDir function returns a reference to an array of
filenames that reside in the directory specified in the $dirName parameter.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95

Appendix A. RIV Modules Reference 69

RIV::RivDebug
The RIV::RivDebug function prints a list of debug message strings to the standard
output.

Synopsis
RIV::RivDebug($lvl,@debugMessageStrings)

Parameters

$lvl Specifies the debug level. Specify a value of 1-4, where 4 represents the
most detailed output.

@debugMessageStrings
Specifies the strings to be printed when the debug level is set.

Description

The RIV::RivDebug function prints the space-concatenated list of strings from the
@debugMessageStrings parameter to the standard output if the value of the
$RIV::DebugLevel global variable is equal to, or greater than, the value specified in
the $lvl parameter.

Example Usage
RIV::RivDebug(4, "my debug message here");

Returns

Upon completion, the RIV::RivDebug function returns no records or values.

See Also
v “DebugLevel” on page 56

RIV::RivError
The RIV::RivError function provides a convenient way to display error messages.

Synopsis
RIV::RivError($class, @errorMessageStrings)

Parameters

$class Specifies the name of the calling Perl API module (for example, RIV::App).

@errorMessageStrings
Specifies the error message string to be printed when an error occurs.

Description

The RIV::RivError function prints the error messages tagged with the name of the
calling class (RIV::*) and will integrate with the forthcoming trace package.

Example Usage
RIV::RivError("RIV::App", "An error has occurred");

Returns

Upon completion, the RIV::RivError function returns no records or values.

70 IBM Tivoli Network Manager IP Edition: Perl API Guide

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95
v “RIV::RivDebug” on page 70

RIV::RivMessage
The RIV::RivMessage function prints a list of log message strings to the standard
output.

Synopsis
RIV::RivMessage($msglvl,@messageLevelStrings)

Parameters

$msglvl
Specifies the level of messages to be logged (the default is warn):
v debug
v info
v warn
v error
v fatal

@messageLevelStrings
Specifies the strings to be printed when the logging level is set.

Description

The RIV::RivMessage function prints the space-concatenated list of strings from the
@messageLevelStrings parameter to the standard output if the value of the
$RIV::MessageLevel global variable is equal to, or greater than, the value specified
in the $msglvl parameter.

Example Usage
RIV::RivMessage("warn", "my messagelevel message here");

Returns

Upon completion, the RIV::RivMessage function returns no records or values.

See Also
v “MessageLevel” on page 58

RIV::Agent module reference
The RIV::Agent module enables developers to implement Network Manager
discovery agents.

The RIV::Agent module provides a constructor and the following categories of
methods:
v SNMP operation methods
v DNS operation methods
v Ping operation methods
v IP and MAC address operation methods

Appendix A. RIV Modules Reference 71

v Telnet operation methods
v Network entity operation methods
v Threads methods

RIV::Agent module synopsis
The RIV::Agent module synopsis provides summary synopses of the constructor
and methods that discovery agents use.
Load the RIV::Agent module
use RIV::Agent;

Call the RIV::Agent constructor and return a RIV::Agent object
$agent = RIV::Agent::new($param, $agentName);

Call the SNMP operation methods
$varOp = $agent->SnmpGet($ne, $oid, $instance, $communitySuffix);
$varOpArray = $agent->SnmpGetNext($ne, $oid, $instance, $communitySuffix);
$varOpArray = $agent->SnmpGetBulk($ne, $oidList, $nonRepeaters,

$maxRepeaters, $communitySuffix);

Call the DNS operation methods
$refAllIpAddrs = $agent->GetDNSAllIpAddrs($name);
$refAllNames = $agent->GetDNSAllNames($ipAddress);
$ip = $agent->GetDNSFirstIpAddr($name);
$name = $agent->GetDNSFirstName($ipAddress);

Call the IP and MAC address operation methods
$ip = $agent->GetIpArp($macAddress);
$mac = $agent->GetMacArp($ipAddress);
$routelist = $agent->GetTraceRoute($ipAddress, $protocol);

Call the ping operation methods
$reply = $agent->GetPingIP($ipAddress, $protocol);
$replylist = $agent->GetPingList($ipAddressList, $protocol);
$reply = $agent->GetPingSubnet($subnet, $netMask, $protocol);
$agent->PingIP($ipAddress, $protocol);
$agent->PingList($ipAddressList, $protocol);
$agent->PingSubnet($subnet, $netMask, $protocol);

Call the Telnet operation methods
$telarray = $agent->GetMultTelnet($ne, $commandList);
$teldata = $agent->GetTelnet($ne, $command, $regExp);
$teldata = $agent->GetTelnetCols($ne, $command, $regExpList, $colNameList);

Call the Network Entity operation methods
$agent->SendNEToDisco($NE);
$agent->SendNEToNextPhase($NE);

Call the threads operation methods
$agent->LockThreads();
$agent->UnLockThreads();

72 IBM Tivoli Network Manager IP Edition: Perl API Guide

RIV::Agent Constructor
The RIV::Agent constructor creates a Network Manager discovery agent with the
specified name.

Constructor
new($param, $agentName)

Parameters

$param
Specifies a RIV::Param object that was returned in a previous call to the
RIV::Param constructor.

$agentName
Specifies a string that identifies the name of the discovery agent to be
created in the domain specified by the RIV::Param object passed to the
$param parameter.

Description

The RIV::Agent constructor creates a Network Manager discovery agent with an
agent name as specified in the $agentName parameter. This agent name resides in
the domain as specified by the $param parameter (that is, a RIV::Param object).

The RIV::Agent constructor uses the Transmission Control Protocol (TCP) to
establish the necessary connections to the Discovery Server and Helper Server. To
ensure that the databases for the discovery agent are created inside the Discovery
Server, the $agentName.agnt file must be defined in the $NCHOME/disco/agents
directory before the Discovery Engine executable, ncp_disco, is started.

Example Usage

The following example:
v Calls the RIV::Param constructor and stores the return value (a RIV::Param

object) in the $param variable.
v Calls the RIV::Agent constructor and specifies a discovery agent name of

foo_perl_disco_agent.
v Stores the return value (a RIV::Agent object) in the $agent variable.
$param = new RIV::Param();
$agent = new RIV::Agent($param, "foo_perl_disco_agent");

Returns

Upon completion, the RIV::Agent constructor returns a RIV::Agent object. This
object is associated with the discovery agent specified in the $agentName parameter.

Appendix A. RIV Modules Reference 73

GetDNSAllIpAddrs
The GetDNSAllIpAddrs method returns all IP addresses corresponding to a
particular node name.

Method Synopsis
GetDNSAllIpAddrs($name)

Parameters

$name Specifies the name of the node whose corresponding IP addresses are of
interest.

Description

The GetDNSAllIpAddrs method returns all IP addresses corresponding to the node
name specified in the $name parameter.

Notes

The GetDNSAllIpAddrs method issues the appropriate DNS request to the Helper
Server, which performs the actual work. Thus, the Helper Server (and ncp_ctrl)
must be running so that this method can make the appropriate DNS request.

Example Usage

The following example:
v Assumes a previous call to the RIV::Agent constructor, which returns a

RIV::Agent object (represented by $agent->).
v Returns to the $refAllIpAddrs variable a reference to an array that contains all IP

addresses corresponding to the node called foo.
v Calls the print operator to send each IP address in the list to standard output.
$refAllIpAddrs = $agent->GetDNSAllIpAddrs("foo");
print @$refAllIpAddrs;

Returns

Upon completion, the GetDNSAllIpAddrs method returns a reference to an array of
IP addresses corresponding to the specified node name.

GetDNSAllNames
The GetDNSAllNames method returns all node names corresponding to a specific IP
address.

Method Synopsis
GetDNSAllNames($ipAddress)

Parameters

$ipAddress
Specifies the IP address whose corresponding node names are of interest.

74 IBM Tivoli Network Manager IP Edition: Perl API Guide

Description

The GetDNSAllNames method returns all node names corresponding to the IP
address specified in the $ipAddress parameter. by issuing a DNS request to the
Helper Server.

Notes

The GetDNSAllNames method issues the appropriate DNS request to the Helper
Server, which performs the actual work. Thus, the Helper Server (and ncp_ctrl)
must be running so that this method can make the appropriate DNS request.

Example Usage

The following example:
v Assumes a previous call to the RIV::Agent constructor, which returns a

RIV::Agent object (represented by $agent->).
v Returns to the $refAllNames variable a reference to an array that contains all

node names corresponding to the IP address 1.2.3.4.
v Calls the print operator to send each node name in the list to standard output.
$refAllNames = $agent->GetDNSAllNames("1.2.3.4");
print @$refAllNames;

Returns

Upon completion, the GetDNSAllNames method returns a reference to an array of
names corresponding to a specific IP address.

GetDNSFirstIpAddr
The GetDNSFirstIpAddr method returns the first IP address in the list of IP
addresses for the specified node.

Method Synopsis
GetDNSFirstIpAddr($name)

Parameters

$name Specifies the name of the node whose first IP address in the corresponding
list of IP addresses is of interest.

Description

The GetDNSFirstIpAddr method returns the first IP address in the list of IP
addresses corresponding to the node specified in the $name parameter.

Notes

The GetDNSFirstIpAddr method issues the appropriate DNS request to the Helper
Server, which performs the actual work. Thus, the Helper Server (and ncp_ctrl)
must be running so that this method can make the appropriate DNS request.

Example Usage

The following example:

Appendix A. RIV Modules Reference 75

v Assumes a previous call to the RIV::Agent constructor, which returns a
RIV::Agent object (represented by $agent->).

v Returns to the $ip variable the first IP address in the list of IP addresses
corresponding to the node called foo.

$ip = $agent->GetDNSFirstIpAddr("foo");

Returns

Upon completion, the GetDNSFirstIpAddr method returns the first IP address in the
list of IP addresses for the specified node. This IP address is a scalar value.

GetDNSFirstName
The GetDNSFirstName method returns the first node name in the list of node names
for the specified IP address.

Method Synopsis
GetDNSFirstName($ipAddress)

Parameters

$ipAddress
Specifies the IP address whose first node name in the corresponding list of
node names is of interest.

Description

The GetDNSFirstName method returns the first node name in the list of node names
corresponding to the IP address specified in the $ipAddress parameter.

Notes

The GetDNSFirstName method issues the appropriate DNS request to the Helper
Server, which performs the actual work. Thus, the Helper Server (and ncp_ctrl)
must be running so that this method can make the appropriate DNS request.

Example Usage

The following example:
v Assumes a previous call to the RIV::Agent constructor, which returns a

RIV::Agent object (represented by $agent->).
v Returns to the $name variable the first node name in the list of node names

corresponding to the IP address 1.2.3.1.
$name = $agent->GetDNSFirstName("1.2.3.1");

Returns

Upon completion, the GetDNSFirstName method returns the first node name in the
list of node names for the specified IP address. This node name is a scalar value.

76 IBM Tivoli Network Manager IP Edition: Perl API Guide

GetIpArp
The GetIpArp method converts the specified MAC address to its corresponding IP
address.

Method Synopsis
GetIpArp($macAddress)

Parameters

$macAddress
Specifies the MAC address to be converted to its corresponding IP address.

Description

The GetIpArp method converts the MAC address specified in the macAddress
parameter to its corresponding IP address.

Notes

The GetIpArp method issues the appropriate ARP request to the Helper Server,
which performs the actual work. Thus, the Helper Server (and ncp_ctrl) must be
running so that this method can make the appropriate ARP request.

Example Usage

The following example:
v Assumes a previous call to the RIV::Agent constructor, which returns a

RIV::Agent object (represented by $agent->).
v Returns to the $ip variable the IP address corresponding to the MAC address

00-0C-F1-56-98-AD.
$ip = $agent->GetIpArp("00-0C-F1-56-98-AD");

Returns

Upon completion, the GetIpArp method returns the IP address corresponding to
the specified MAC address.

GetMacArp
The GetMacArp method converts the specified IP address to a MAC address.

Method Synopsis
GetMacArp($ipAddress)

Parameters

$ipAddress
Specifies the IP address to be converted to an associated MAC address.

Description

The GetMacArp method converts the IP address specified in the ipAddress parameter
to an associated MAC address.

Appendix A. RIV Modules Reference 77

Notes

The GetMacArp method issues the appropriate ARP request to the Helper Server,
which performs the actual work. Thus, the Helper Server (and ncp_ctrl) must be
running so that this method can make the appropriate ARP request.

Example Usage

The following example:
v Assumes a previous call to the RIV::Agent constructor, which returns a

RIV::Agent object (represented by $agent->).
v Returns to the $macAddress variable the MAC address corresponding to the IP

address 1.2.3.1.
$macAddress = $agent->GetMacArp("1.2.3.1");

Returns

Upon completion, the GetMacArp method returns the MAC address corresponding
to the specified IP address.

GetMultTelnet
The GetMultTelnet method initiates a Telnet session on the specified network
device and then executes the specified Telnet commands on that network device.

Method Synopsis
GetMultTelnet($ne, $commandList)

Parameters

$ne Specifies a reference to the network entity, in this case the network device
on which to execute the Telnet commands specified in the $commandList
parameter.

$commandList
Specifies an array that contains the Telnet commands to execute on the
network device specified in the $ne parameter.

Description

The GetMultTelnet method initiates a Telnet session on the network device
specified in the $ne parameter. It then executes the Telnet commands specified in
the $commandList parameter on that network device.

Notes

The GetMultTelnet method issues the appropriate Telnet request to the Helper
Server, which performs the actual work. Thus, the Helper Server (and ncp_ctrl)
must be running so that this method can make the appropriate Telnet request.

Returns

Upon completion, the GetMultTelnet method returns an array of data
corresponding to each Telnet command executed during the Telnet session.

78 IBM Tivoli Network Manager IP Edition: Perl API Guide

GetPingIP
The GetPingIP method issues a ping at the specified IP address to determine if a
network device exists at that address.

Method Synopsis
GetPingIP($ipAddress [, $protocol])

Parameters

$ipAddress
Specifies the IP address to be pinged.

$protocol
Specifies an optional parameter that identifies the IP protocol. You can
specify one of the following values:
v 1 — Specifies Internet Protocol version 4 (IPv4).
v 3 — Specifies Internet Protocol version 6 (IPv6).

Description

The GetPingIP method pings the IP address specified in the ipAddress parameter. A
network device that exists at the specified IP address will respond to this ping
request.

Notes

The GetPingIP method issues the appropriate ping request to the Helper Server,
which performs the actual work. Thus, the Helper Server (and ncp_ctrl) must be
running so that this method can make the appropriate ping request.

Example Usage

The following example:
v Assumes a previous call to the RIV::Agent constructor, which returns a

RIV::Agent object (represented by $agent->).
v Returns to the $device_exists variable a value of 0 (zero) or 1.
$device_exists = $agent->GetPingIP("1.2.3.1");

Returns

Upon completion, the GetPingIP method returns one of the following values:
v 0 (zero) — There is no network device at the specified IP.
v 1 — There is a network device at the specified IP address.

Appendix A. RIV Modules Reference 79

GetPingList
The GetPingList method issues a ping at the specified list of IP addresses to
determine if network devices exist at those addresses.

Method Synopsis
GetPingList($ipAddressList [, $protocol])

Parameters

$ipAddressList
Specifies the list of IP addresses to be pinged.

$protocol
Specifies an optional parameter that identifies the IP protocol. You can
specify one of the following values:
v 1 — Specifies Internet Protocol version 4 (IPv4).
v 3 — Specifies Internet Protocol version 6 (IPv6).

Description

The GetPingList method pings the list of IP addresses specified in the ipAddressList
parameter. Network devices that exist at the specified IP addresses will respond to
this ping request.

Notes

The GetPingList method issues the appropriate ping request to the Helper Server,
which performs the actual work. Thus, the Helper Server (and ncp_ctrl) must be
running so that this method can make the appropriate ping request.

Returns

Upon completion, the GetPingList method returns a list that identifies whether the
network devices exist at the specified IP addresses. The following values are
specified in the list:
v 0 (zero) — There is no network device at the specified IP.
v 1 — There is a network device at the specified IP address.

GetPingSubnet
The GetPingSubnet method pings the specified subnet and returns whether a reply
was received. issues a ping at the specified subnet to determine if one or more
network devices exist at that subnet.

Method Synopsis
GetPingSubnet($subnet, $netMask [, $protocol])

Parameters

$subnet
Specifies the IP address of the subnet to be pinged. Typically, subnets are
defined as all devices whose IP addresses have the same prefix. Thus, all
devices with IP addresses that start with 1.1.1 would be part of the same
subnet.

80 IBM Tivoli Network Manager IP Edition: Perl API Guide

$netmask
Specifies the mask used to determine the subnet to which an IP address
belongs.

$protocol
Specifies an optional parameter that identifies the IP protocol. You can
specify one of the following values:
v 1 — Specifies Internet Protocol version 4 (IPv4).
v 3 — Specifies Internet Protocol version 6 (IPv6).

Description

The GetPingSubnet method pings the subnet specified in the subnet parameter
Network devices that exist at the specified subnet will respond to this ping
request.

Notes

The GetPingSubnet method issues the appropriate ping request to the Helper
Server, which performs the actual work. Thus, the Helper Server (and ncp_ctrl)
must be running so that this method can make the appropriate ping request.

Returns

Upon completion, the GetPingSubnet method returns a list that identifies whether
the network devices exist at the specified subnet. The following values are
specified in the list:
v 0 (zero) — There is no network device at the specified IP.
v 1 — There is a network device at the specified IP address.

GetTelnet
The GetTelnet method initiates a Telnet session on the specified network device
and executes the specified Telnet command on that network device.

Method Synopsis
GetTelnet($ne, $command, $regExp)

Parameters

$ne Specifies a reference to the network entity, in this case the network device
on which to execute the Telnet command specified in the $command
parameter.

$command
Specifies the Telnet command to execute on the network device specified in
the $ne parameter.

$regExp
Specifies the regular expression to apply to the response of the Telnet
command specified in the $command parameter.

Description

The GetTelnet method initiates a Telnet session on the network device specified in
the $ne parameter. The GetTelnet method then executes the Telnet command
specified in the $command parameter on that network device.

Appendix A. RIV Modules Reference 81

Notes

The GetTelnet method issues the appropriate Telnet request to the Helper Server,
which performs the actual work. Thus, the Helper Server (and ncp_ctrl) must be
running so that this method can make the appropriate Telnet request.

Returns

Upon completion, the GetTelnet method returns the data corresponding to the
Telnet command executed during the Telnet session. This data must meet the
regular expression supplied in the $regExp parameter.

GetTelnetCols
The GetTelnetCols method initiates a Telnet session on the specified network
device and executes the specified Telnet command on that network device.

Method Synopsis
GetTelnetCols($ne, $command, $regExpList, $colNameList)

Parameters

$ne Specifies a reference to the network entity, in this case the network device
on which to execute the Telnet command specified in the $command
parameter.

$command
Specifies the Telnet command to execute on the network device specified in
the $ne parameter.

$regExpList
Specifies an array of regular expressions to apply to the response of the
Telnet command specified in the $command parameter.

$colNameList
Specifies an array of table columns.

Description

The GetTelnetCols method:
v Initiates a Telnet session on the network device specified in the $ne parameter

by issuing a Telnet request through the Helper Server.
v Executes the Telnet command specified in the $command parameter on that

network device.
v Splits data into columns based on the regular expression specified in the

$regExpList parameter. This method is particularly suited to responses to Telnet
commands that consist of tables.

Notes

The GetTelnetCols method issues the appropriate Telnet request to the Helper
Server, which performs the actual work. Thus, the Helper Server (and ncp_ctrl)
must be running so that this method can make the appropriate Telnet request.

Returns

Upon completion, the GetTelnetCols method returns the data corresponding to the
Telnet command executed during the Telnet session. This data must meet the

82 IBM Tivoli Network Manager IP Edition: Perl API Guide

regular expression supplied in the $regExp parameter.

GetTraceRoute
The GetTraceRoute method traces a route to the specified destination IP address
and returns the network devices that reside on that route.

Method Synopsis
GetTraceRoute($ipAddress [, $protocol])

Parameters

$ipAddress
Specifies the destination IP address whose route is to be traced.

$protocol
Specifies an optional parameter that identifies the IP protocol. You can
specify one of the following values:
v 1 — Specifies Internet Protocol version 4 (IPv4).
v 3 — Specifies Internet Protocol version 6 (IPv6).

Description

The GetTraceRoute method traces a route to the destination IP address specified in
the ipAddress parameter. Network devices that exist at the IP addresses on the
route will respond to ping requests.

Notes

The GetTraceRoute method issues the appropriate ping request to the Helper
Server, which performs the actual work. Thus, the Helper Server (and ncp_ctrl)
must be running so that this method can make the appropriate ping request.

Returns

Upon completion, the GetTraceRoute method returns a list of the devices that
reside at IP addresses on the route ending with the destination address specified in
the $ipAddress parameter.

LockThreads
The LockThreads method acquires a lock that only a single agent thread may hold
at any given time.

Method Synopsis
LockThreads()

Parameters

None

Description

The LockThreads method provides a way for a discovery agent to acquire a lock
that only a single agent thread may hold at any given time. This means that the
code within the locked section is serialized. You should release the lock by calling
the UnLockThreads method.

Appendix A. RIV Modules Reference 83

Example Usage

The following example shows a call to the LockThreads method followed by a call
to the UnLockThreads method to release the lock. The example assumes a previous
call to the RIV::Agent constructor, which returns a RIV::Agent object (represented
by $agent->).
$agent->LockThreads();

#
Serialised code goes here
#

$agent->UnLockThreads();

Returns

Upon completion, the LockThreads method does not return any values.

PingIP
The PingIP method pings the specified IP address.

Method Synopsis
PingIP($ipAddress [, $protocol])

Parameters

$ipAddress
Specifies the IP address to be pinged.

$protocol
Specifies an optional parameter that identifies the IP protocol. You can
specify one of the following values:
v 1 — Specifies Internet Protocol version 4 (IPv4).
v 3 — Specifies Internet Protocol version 6 (IPv6).

Description

The PingIP method pings the IP address specified in the ipAddress parameter. The
method returns without waiting for a response from the network device at that
address.

Notes

The PingIP method issues the appropriate ping request to the Helper Server, which
performs the actual work. Thus, the Helper Server (and ncp_ctrl) must be running
so that this method can make the appropriate ping request.

Returns

Upon completion, the PingIP method returns the value 1 to indicate that it
successfully pinged the device at the specified address. Otherwise, it returns the
value 0 (zero).

84 IBM Tivoli Network Manager IP Edition: Perl API Guide

PingList
The PingList method pings the specified list of IP addresses.

Method Synopsis
PingList($ipAddressList [, $protocol])

Parameters

$ipAddressList
Specifies the list of IP addresses to be pinged.

$protocol
Specifies an optional parameter that identifies the IP protocol. You can
specify one of the following values:
v 1 — Specifies Internet Protocol version 4 (IPv4).
v 3 — Specifies Internet Protocol version 6 (IPv6).

Description

The PingList method pings the list of IP addresses specified in the ipAddressList
parameter. The method returns without waiting for responses from the network
devices at the list of addresses.

Notes

The PingList method issues the appropriate ping request to the Helper Server,
which performs the actual work. Thus, the Helper Server (and ncp_ctrl) must be
running so that this method can make the appropriate ping request.

Returns

Upon completion, the PingList method returns the value 1 to indicate that it
successfully pinged the devices at the specified addresses. Otherwise, it returns the
value 0 (zero).

PingSubnet
The PingSubnet method pings the specified subnet.

Method Synopsis
PingSubnet($subnet, $netMask [, $protocol])

Parameters

$subnet
Specifies the IP address of the subnet to be pinged. Typically, subnets are
defined as all devices whose IP addresses have the same prefix. Thus, all
devices with IP addresses that start with 1.1.1 would be part of the same
subnet.

$netmask
Specifies the mask used to determine the subnet to which an IP address
belongs.

$protocol
Specifies an optional parameter that identifies the IP protocol. You can
specify one of the following values:

Appendix A. RIV Modules Reference 85

v 1 — Specifies Internet Protocol version 4 (IPv4).
v 3 — Specifies Internet Protocol version 6 (IPv6).

Description

The PingSubnet method pings the subnet specified in the subnet parameter. The
method returns without waiting for responses from the network devices that reside
on the specified subnet.

Notes

The PingSubnet method issues the appropriate ping request to the Helper Server,
which performs the actual work. Thus, the Helper Server (and ncp_ctrl) must be
running so that this method can make the appropriate ping request.

Returns

Upon completion, the PingSubnet method returns the value 1 to indicate that it
successfully pinged the devices at the specified subnet. Otherwise, it returns the
value 0 (zero).

SendNEToDisco
The SendNeToDisco method sends a processed RIV::Record to the returns table of
the particular Agent database in DISCO.

Method Synopsis
SendNEToDisco($entity, $lastRecTag)

Parameters

$entity
Specifies a reference to a hash list that contains the definition of the record
to be sent to DISCO. For convenience, the RIV::Record module is such a
hash list that provides nested structures for representing local and remote
neighbors.

$lastRecTag
Specifies the record for the network entity according to the following
values:
v 0 (zero) — Indicates that more records for this network entity are to

follow.
v 1 — Indicates the last record for this network.

Note: If you use RIV::Record module objects, this parameter is ignored.

Description

The SendNEToDISCO method sends a processed $entity record object to the returns
table of the particular Agent database in DISCO. Typically, the $entity parameter is
a RIV::Record module object that contains information about local and remote
neighbors.

86 IBM Tivoli Network Manager IP Edition: Perl API Guide

Example Usage
$TestNE=new RIV::Record($data);
..
..
..
$agent->SendNEToDisco($TestNE,0);

Returns

None

SendNEToNextPhase
The SendNEToNextPhase method is called by discovery agents that accept data
during multiple phases of a network discovery operation. These "multi-phased"
discovery agents call SendNEToNextPhase when any data processing for a given
phase (for example, phase 1) has been completed.

Method Synopsis
RIV::Agent::SendNEToNextPhase($entity)

Parameters

$entity
Specifies the network entity to be processed and then marked as having
been processed for a specific discovery phase.

Description

The SendNEToNextPhase method marks the network entity specified in the $entity
parameter as having completed processing in the current discovery phase, and it
puts the network entity back on the Agent queue ready for processing in the next
discovery phase.

Each discovery agent maintains an Agent queue that contains network entities sent
to it from the DISCO process. A typical discovery agent processes the network
entities on its Agent queue and then calls the SendNEToDisco method to return the
processed network entity to the DISCO process.

Unlike a typical discovery agent, a multi-phased discovery agent must allow for
the fact that each discovery phase can be hours apart. Therefore, a multi-phased
discovery agent must make multiple calls to the SendNEToNextPhase method to put
the network entity back on the Agent queue and mark it as ready for processing in
the next discovery phase. Once it completes processing of the network entity, the
multi-phased discovery agent calls the SendNEToDisco method to send the data
back to the DISCO process.

The following is the basic flow for a multi-phased discovery agent:
v The DISCO process sends a record (network entity) that provides details about a

device that this phased discovery agent can process.
v The multi-phased discovery agent receives this record.
v When free, the multi-phased discovery agent starts processing the record in

discovery phase 1. When processing is complete in discovery phase 1, the
multi-phased discovery agent calls SendNEToNextPhase to put the record back on
the Agent queue and mark it as ready for processing in the next discovery
phase.

Appendix A. RIV Modules Reference 87

During any of the discovery phases, a multi-phased agent may also be sending
multiple data requests to the Helper Server through the GetSnmp and GetTelnet
methods that the RIV::Agent module provides.

v When the phase changes, the DISCO process sends out a broadcast indicating
that it is proceeding to the next phase (for example, discovery phase 2). When
free, the multi-phased discovery agent starts processing the record marked ready
for processing in discovery phase 1. When processing is complete in discovery
phase 2, the discovery agent calls SendNEToNextPhase to put the record back on
the Agent queue and mark it as ready for processing in the next discovery
phase.

v When the phase changes, the DISCO process sends out a broadcast indicating
that it is proceeding to the next phase (for example, discovery phase 3). When
free, the multi-phased discovery agent completes processing of the record
marked ready for processing in discovery phase 2 and calls SendNEToDisco to
send all of the data back to the DISCO process.

Notes

You invoke the SendNEToNextPhase method on the RIV::Agent object returned in a
previous call to the RIV::Agent constructor. For example:
.
.
.
my $agent;
my $agentName = "CiscoSwitchInPerl";
.
.
.
$agent=new RIV::Agent($param, $agentName);
$agent->SendNEToNextPhase($TestNE);
.
.
.

Example Usage

The example that illustrates calls to the SendNEToNextPhase and SendNEToDisco
methods is divided into the following sections:
v Create a new multi-phased agent
v Setup for discovery phase-dependent processing
v Setup for discovery phase 1 processing
v Setup for discovery phase 2 processing
v Setup for discovery phase 3 processing

Create a new multi-phased agent
.
.
.
my $agent;
my $agentName = "CiscoSwitchInPerl";

sub Init{
my $param=new RIV::Param();
$agent=new RIV::Agent($param, $agentName);

}
.
.
.

88 IBM Tivoli Network Manager IP Edition: Perl API Guide

The previous code:
v Declares two variables. The $agent variable stores the discovery agent application

session object identifier returned by the RIV::Agent constructor. The $agentName
variable stores the name of the agent, which in this example is
CiscoSwitchInPerl.

v The call to the RIV::Param constructor returns an object of type RIV::Param to
the $param variable.

v The call to the RIV::Agent constructor takes two parameters: the RIV::Param
object ($param) and the name of the agent ($agentName). The RIV::Agent
constructor returns an agent session object for use in the subsequent call to the
SendNEToNextPhase method.

Setup for discovery phase-dependent processing

The following code shows the setup for phase-dependent processing:
sub ProcessPhase($){
my $phaseNumber = shift;

if($RIV::DebugLevel >= 1)
{
print "Phase number is $phaseNumber\n";
}
}

Setup for discovery phase 1 processing

The following code shows the setup for phase 1 processing, including the call to
the SendNEToNextPhase method and calls to the SnmpGetNext method. Note that the
calls to the SendNEToNextPhase and SnmpGetNext methods are made through the
agent session object ($agent) returned in the previous call to the RIV::Agent
constructor. The SendNEToNextPhase method:
v Marks the network entity ($TestNE) as having been processed for phase 1.
v Puts this network entity on the CiscoSwitchInPerl agent queue ready for phase

2 processing.
sub ProcessPhase1($){
my $TestNE = shift;
.
.
.
BuildVlanData($TestNE);
my $refVlanIfIndex=$agent->SnmpGetNext($TestNE,’vlanIfIndex’);
BuildCardPortToIfIndexData($TestNE);

my $refLphysAddress=$agent->SnmpGetNext($TestNE,’ifPhysAddress’);
.
.
.
$agent->SendNEToNextPhase($TestNE);
}

Setup for discovery phase 2 processing

A second call to the SendNEToNextPhase method causes the network entity to be
marked as having been processed for phase 2 and to be added to the
CiscoSwitchInPerl agent queue ready for phase 2 processing.
sub ProcessPhase2($){
my $TestNE = shift;
.

Appendix A. RIV Modules Reference 89

.

.
$agent->SendNEToNextPhase($TestNE);
}

Setup for discovery phase 3 processing

The following code sets up discovery phase 3 processing: Finally, the multi-phased
discovery agenta third call to the SendNEToNextPhase method causes the network
entity to be marked as having been processed for phase 3 and that it need not be
added to the CiscoSwitchInPerl agent queue because there is no additional phase
processing required. This multi-phased agent also sends back to the DISCO process
the SendNEToNextPhase record set to the value 1 to indicate the final tokenA second
parameter to the SendNEToNextPhase method, the value 0 (zero), signifies to the
DISCO process that this is the last record token and no additional phase processing
is required.
sub ProcessPhase3($){
my $TestNE = shift;
.
.
.
$TestNE->{’m_LastRecord’}=1;
.
.
.
$agent->SendNEToDisco($TestNE,0);
}

The CiscoSwitchInPerl discovery agent sends back the data associated with this
network entity. Because there is no further processing required for this network
entity, the CiscoSwitchInPerl discovery agent:
v Sets the m_LastRecord to the value 1 to indicate the final token and to let the

DISCO process know that processing is complete for this network entity.
v Passes the value 0 (zero) as the second parameter in the call to SendNEToDisco. A

multi-phased agent receives a single network entity, but it may return to the
DISCO process several records (one for each local neighbor entry and one for
each remote neighbor entry). The DISCO process determines that the
multi-phased discovery agent has finished processing a network entity when the
value 0 is specified in the call to SendNEToDisco to indicate the last record token.

Returns

Upon completion, the SendNEToNextPhase method returns no value.

See also
v “RIV::Agent Constructor” on page 73
v “SendNEToDisco” on page 86

90 IBM Tivoli Network Manager IP Edition: Perl API Guide

SnmpGet
The SnmpGet method retrieves the appropriate SNMP information from the Helper
Server.

Method Synopsis
SnmpGet($ne, $oid [,$instance, $communitySuffix])

Parameters

$ne Specifies a reference to the network entity. Typically, this network entity is
a RIV::Record object.

$oid Specifies a MIB variable (for example, ifIndex).

$instance
Specifies the instance of the MIB variable. This is an optional parameter.

$communitySuffix
Specifies the suffix to the community string. This is an optional parameter.

Description

The SnmpGet method retrieves the specified SNMP information for the network
entity specified in the $ne parameter.

Notes

The SnmpGet method issues the appropriate SNMP request to the Helper Server,
which performs the actual work. Thus, the Helper Server (and ncp_ctrl) must be
running so that this method can make the appropriate SNMP request.

Example Usage
$varOp = $agent->SnmpGet($NE, ’sysDescr’);
print "$varop->{ASN1}", "$varop->{VALUE}", "\n";

Returns

Upon completion, the SnmpGet method returns a varop that contains two key value
pairs. The keys are ANS1 and value. The ANS1 value is the index value after the OID
corresponding to the MIB variable is removed. It is a single number for MIB
variables indexed on a single key and a dot notation for MIB variables indexed by
multiple keys.

Note: The ANS1 value obtained using the RIV::SnmpAccess module is the complete
OID that needs to be split, whereas the ANS1 value returned by the Helper Server is
only the index part.

Appendix A. RIV Modules Reference 91

SnmpGetBulk
The SnmpGetBulk method retrieves SNMP GETBULK information from the Helper
Server.

Method Synopsis
SnmpGetBulk($ne, $oidList, $nonRepeaters,maxRepeaters [,$communitySuffix])

Parameters

$ne Specifies a reference to the network entity. Typically, this network entity is
a RIV::Record object.

$oidList
Specifies a reference to an array of MIB variables. For example:
@oids=(’sysDescr’,’sysContact’,’sysUpTime’,’ipInReceives’,
’ipOutRequests’,’ipOutDiscards’,’ipForwDatagrams’,
’tcpCurrEstab’, ’ifDescr’);
$oidList = \@oids;

$noRepeaters
Specifies the number of MIB values at the start of the array of MIB
variables that return a single value. For example, the ’sysDescr’ MIB
variable from the @oids array returns a single value.

$maxRepeaters
This parameter is for any MIB variable (for example, ifIndex) in the array
of MIB variables that returns a table. This parameter specifies the number
of values in the table that are to be returned. For example, the value 2
returns only the first two entries. If all the entries are to be returned,
$maxRepeaters is set to a large number.

$communitySuffix
Specifies the suffix to the community string.

Description

The SnmpGetBulk method retrieves SNMP GETBULK information for the network
entity specified in the $ne parameter.

Notes

The SnmpGetBulk method issues the appropriate SNMP request to the Helper
Server, which performs the actual work. Thus, the Helper Server (and ncp_ctrl)
must be running so that this method can make the appropriate SNMP request.

Example Usage
’ipOutRequests’,’ipOutDiscards’,’ipForwDatagrams’,’tcpCurrEstab’,
’ifDescr’);
($vap) = $agent->SnmpGetBulk($nodeIP, \@oids, 3, 100);
foreach my $varop (@{ $vap})
{
print "$varop->{ASN1}", "$varop->{VALUE}", "\n";
}

Returns

Upon completion, the SnmpGetBulk method returns a reference to a varop array.
Each varop array contains two key value pairs. The keys are ANS1 and VALUE. The
ANS1 value is the index value after the OID corresponding to the MIB variable is

92 IBM Tivoli Network Manager IP Edition: Perl API Guide

removed. It is a single number for MIB variables indexed on a single key and a dot
notation for MIB variables indexed by multiple keys.

Note: The ANS1 value obtained using the RIV::SnmpAccess module is the complete
OID that needs to be split, whereas the ANS1 value returned by the Helper Server is
only the index part.

SnmpGetNext
The SnmpGetNext method retrieves the appropriate SNMP information from the
Helper Server.

Method Synopsis
SnmpGetNext($ne, $oid [,$instance, $communitySuffix])

Parameters

$ne Specifies a reference to the network entity. Typically, this network entity is
a RIV::Record object.

$oid Specifies a MIB variable (for example, ifIndex).

$instance
Specifies the instance of the MIB variable. This is an optional parameter.

$communitySuffix
Specifies the suffix to the community string. This is an optional parameter.

Description

The SnmpGetNext method retrieves the specified SNMP information for the network
entity specified in the $ne parameter. If $instance is defined, the MIB sub-tree
starting at that particular instance is retrieved. The $instance parameter must be
specified as an ASN1 string (for example, "5.3.15").

Notes

The SnmpGetNext method issues the appropriate SNMP request to the Helper
Server, which performs the actual work. Thus, the Helper Server (and ncp_ctrl)
must be running so that this method can make the appropriate SNMP request.

Example Usage
$varOpArray = $agent->SnmpGetNext($NE, ’ifDescr’);
foreach my $varop (@{ $varOpArray})
{
print "$varop->{ASN1}", "$varop->{VALUE}", "\n";
}

Returns

Upon completion, the SnmpGetNext method returns a reference to a varop array.
Each varop array contains two key value pairs. The keys are ANS1 and VALUE. The
ANS1 value is the index value after the OID corresponding to the MIB variable is
removed. It is a single number for MIB variables indexed on a single key and a dot
notation for MIB variables indexed by multiple keys.

Note: The ANS1 value obtained using the RIV::SnmpAccess module is the complete
OID that needs to be split, whereas the ANS1 value returned by the Helper Server is
only the index part.

Appendix A. RIV Modules Reference 93

UnLockThreads
The UnLockThreads method releases the lock previously acquired in a call to the
LockThreads method.

Method Synopsis
UnLockThreads()

Parameters

None

Description

The UnLockThreads method releases the lock previously acquired in a call to the
LockThreads method.

Example Usage

The following example shows a call to the LockThreads method followed by a call
to the UnLockThreads method to release the lock. The example assumes a previous
call to the RIV::Agent constructor, which returns a RIV::Agent object (represented
by $agent->).
$agent->LockThreads();

#
Serialised code goes here
#

$agent->UnLockThreads();

Returns

Upon completion, the UnLockThreads method does not return any values.

RIV::App module reference
The RIV::App module provides an interface for implementing Network Manager
client/server applications within one domain.

The RIV::App module provides two constructors that instantiate a RIV::App object.
The constructors are described in reference (man) page format.

Note: The RIV::App module does not provide any methods or functions.

RIV::App module synopsis
The RIV::App module synopsis shows how to make calls to the two constructors
that this module provides.

The comments provided in the synopsis serve as a quick reference as to the
purpose of the constructors. The reference (man) page for the constructors provides
the details.
Load the RIV::App module.
use Riv::App;
#

Call the first form of the RIV::App constructor, passing to $domain the
name of the Network Manager domain. The constructor returns

94 IBM Tivoli Network Manager IP Edition: Perl API Guide

a RIV::App object to $rivApp.
$rivApp = new RIV::App($domain, $progname, $doHeartBeat);
#

Call the second form of the RIV::App constructor, passing as the
first parameter a RIV::Param object that was returned
in a previous call to the RIV::Param constructor. The constructor
returns a RIV::App object to $rivApp.

$rivApp = new RIV::App(RIV::Param, $progname, $doHeartBeat);

RIV::App Constructor
The RIV::App constructor creates and initializes a new application session.

Constructor
new($domain, $progname [, $doHeartBeat])

new(RIV::Param, $progname [, $doHeartBeat])

Parameters

$domain
Specifies a Network Manager IP Edition domain name.

Note: A default domain name is not supported.

RIV::Param
Specifies a RIV::Param object that was returned in a previous call to the
RIV::Param constructor. The RIV::Param object contains a parsed form of
the command line arguments.

$progname
Specifies a parameter used when building fault-tolerant server groups. It
must contain a string that uniquely identifies the application. By
convention, the application name should start with ncp_.

$doHeartBeat
Specifies an optional parameter that indicates whether the application
generates a heartbeat signal. If the application generates a heartbeat signal,
set this parameter to a nonzero value.

Description

The RIV::App constructors create and initialize a new application session. The
constructors differ in that one takes a $domain parameter and the other takes a
RIV::Param parameter.

Example Usage
$app = RIV::App::new("foo", "ncp_test", 1);

#!$NCHOME/bin/ncp_perl
use RIV;
use RIV::App;
my $app = RIV::App::new("MYDOMAIN", "ncp_test");
...
undef $app;

Returns

Upon completion, the RIV::App constructors return a RIV::App object that
encapsulates the new application session.

Appendix A. RIV Modules Reference 95

See Also
v “RIV::Param Constructor” on page 106

RIV::OQL module reference
The RIV::OQL module provides an interface to communicate with and perform
operations on Network Manager internal databases.

The RIV::OQL module provides a constructor that allows you to create a new
RIV::OQL session object and within this session object call methods to:
v Connect to a particular service type
v Create new databases and tables
v Query the internal databases
v Insert records into and delete records from the internal databases
v Print and update records that reside in the internal databases

The constructor and methods are described in reference (man) page format.

RIV::OQL module synopsis
The RIV::OQL module synopsis shows how to make calls to the constructor and
database operation methods that this module provides.

The comments provided in the synopsis serve as a quick reference as to the
purpose of the constructor and database operation methods. The reference (man)
pages for the constructor and each method provide the details.
Load the RIV::OQL module
use RIV::OQL;

Call the RIV::OQL constructor, passing to $appSession one of the
following blessed references:
#
+ A RIV::Agent object (returned in a previous call to the
RIV::Agent constructor)
+ A RIV::App object (returned in a previous call to the
RIV::App constructor)
#
The $precisionService parameter takes one of the valid Network Manager
service names, for example, ncp_disco (Disco service).
#
The calls to the database operation methods are made through a
reference to the RIV::OQL session object ($oql->) that the RIV::OQL
constructor returns.
#
$oql = new RIV::OQL($appSession, $precision_Service);

Call the Send method to send an OQL query to the specified database.
#
$oql->Send($oqlStatement, $returnResults);
#
Call the CreateDb method to create a database in the Network Manager
service specified in a previous call to the RIV::OQL constructor.
#
$oql->CreateDB($databaseName);
#
Call the CreateTable method to create a table in the database.
#
$oql->CreateTable($databaseName, $tableName, \%columnNamesandTypes);
#
Call the Insert method to insert records into a database table.

96 IBM Tivoli Network Manager IP Edition: Perl API Guide

$oql->Insert($database, $table, \%record);
#
Call the Select method to execute a specific OQL command.
oql->Select($database, $table, $columnName);
#
Call the RIV module’s GetResult function to get input data.
my ($type, $data) = $oql->RIV::GetResult(10);
#
Call the Print method to print the contents of the records obtained
as a result of this database query.
$oql->Print($data);
#
Call the Delete method to delete records from the database table.
$oql->Delete($database, $table, $clauseForDeletion);
#
Call the Update method to update records that currently reside in
the database.
$oql->Update($database, $table, $setClause, $whereClause);

RIV::OQL Constructor
The RIV::OQL constructor creates and initializes a new RIV::OQL object.

Constructor
new($rivSession, $rivService)

Parameters

$rivSession
Specifies a blessed reference to either a RIV::App or RIV::Agent object.

$rivService
Specifies the name of a service to indicate the internal database to which
this OQL session interacts. The following table identifies the available
services to which to connect along with their corresponding executable. For
example, the service name Disco indicates that the OQL session will
interact with the DISCO databases that the ncp_disco executable creates.

Service Name Executable

Model ncp_model

Amos ncp_event

Monitor ncp_monitor

Class ncp_class

Store ncp_store

Exec ncp_exec

Ctrl ncp_ctrl

Helper ncp_d_helpserv

Disco ncp_disco

Description

The RIV::OQL constructor creates and initializes a new RIV::OQL session object.

Example Usage
$app = new RIV::App();
$oql = new RIV::OQL($app, ’Disco’);

Appendix A. RIV Modules Reference 97

Returns

Upon completion, the RIV::OQL constructor returns a RIV::OQL session object.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95

CreateDB
The CreateDB method creates a database.

Method Synopsis
CreateDB($databaseName)

Parameters

$databaseName
Specifies the name of the database to be created.

Description

The CreateDB method creates a database with the name $databaseName in the
specified service. You specified this service in the $rivService parameter in a
previous call to the RIV::OQL constructor.

Example Usage

The following example shows how to create a new database, with the name foo, in
the Disco service for which an OQL session was created using the RIV::OQL
constructor.
$oql = new RIV::OQL($app, ’Disco’);
$oql->CreateDB("foo");

Returns

Upon completion, the CreateDB method does not return any records.

See Also
v “RIV::OQL Constructor” on page 97“RIV::Agent Constructor” on page 73

CreateTable
The CreateTable method creates a database table.

Method Synopsis
CreateTable($databaseName, $tableName, \%columnNames)

Parameters

$databaseName
Specifies the name of the database in which the table is to be created.

$tableName
Specifies the name of the table to be created.

98 IBM Tivoli Network Manager IP Edition: Perl API Guide

\%columnNames
Specifies a hash list of the columns in the table. The keys in the hash list
refer to the column name and the values are one of the types supported by
the OQL syntax.

Description

The CreateTable method creates a database table with the name specified in the
$tableName parameter in the database specified in the $databaseName parameter.

You created this database in previous calls to the:
v RIV::OQL constructor — You specified the name of a service (in the $rivService

parameter) to indicate the internal database to which this RIV::OQL session object
interacts.

v CreateDB method — You specified the name of the database (in the
$databaseName parameter) to be created in the service specified in the call to the
RIV::OQL constructor.

Example Usage

The following example shows how to create:
v A new database, with the name foo, in the Disco service for which a RIV::OQL

session object was created in a call to the RIV::OQL constructor.
v Column names (m_IpAddress and m_Name) and associated values to appear in the

table.
v A table called bar.
$oql = new RIV::OQL($app, ’Disco’);
$oql->CreateDB("foo");
%columnNames = ("m_IpAddress"=> "text", "m_Name"=> "text");
$oql->CreateTable("foo", "bar", \%columnNames);

Returns

Upon completion, the CreateTable method does not return any records.

See Also
v “RIV::OQL Constructor” on page 97
v “CreateDB” on page 98

Delete
The Delete method deletes records from a database table.

Method Synopsis
Delete($databaseName, $tableName, $clause)

Parameters

$databaseName
Specifies the name of the database from which records are to be deleted.

$tableName
Specifies the name of the table in the specified database ($databaseName)
from which records are to be deleted.

Appendix A. RIV Modules Reference 99

$clause
Specifies any valid OQL comparative statement used as a condition for
deleting records. If a record matches $clause, the Delete method will delete
it.

Description

The Delete method deletes records from the table specified in the $tableName
parameter that resides in the database specified in $databaseName parameter and
that satisfy the criteria defined by the OQL comparative statement specified in the
$clause parameter.

You created this database and database table in previous calls to the:
v RIV::OQL constructor — You specified the name of a service (in the $rivService

parameter) to indicate the internal database to which this RIV::OQL session object
interacts.

v CreateDB method — You specified the name of the database (in the
$databaseName parameter) to be created in the service specified in the call to the
RIV::OQL constructor.

v CreateTable method — You specified the name of the database table (in the
$tableName parameter) to be created in the database specified in the call to the
CreateDB method.

Example Usage

The following example shows how to delete records from:
v A database called master.
v A table called entityByName.

The records to be deleted are those with an EntityOID equal to the value
1.3.6.1.4.1.42.2.1.1.
$oql->Delete(’master’, ’entityByName’, "EntityOID = ’1.3.6.1.4.1.42.2.1.1’");

Returns

Upon completion, the Delete method does not return any records.

See Also
v “RIV::OQL Constructor” on page 97
v “CreateDB” on page 98
v “CreateTable” on page 98

Insert
The Insert method inserts records into a database table.

Method Synopsis
Insert($databaseName, $tableName, \%record)

Parameters

$databaseName
Specifies the name of the database in which the record is to be inserted.

100 IBM Tivoli Network Manager IP Edition: Perl API Guide

$tableName
Specifies the name of the table in the specified database ($databaseName) in
which the record is to be inserted.

\%record
Specifies a hash list that defines the record to be inserted.

Description

The Insert method creates an OQL statement that inserts the record defined by the
hash list specified in the \%record parameter into the database table specified in
the $tableName parameter that resides in the database specified in the
$databaseName parameter.

You created this database and database table in previous calls to the:
v RIV::OQL constructor — You specified the name of a service (in the $rivService

parameter) to indicate the internal database to which this RIV::OQL session object
interacts.

v CreateDB method — You specified the name of the database (in the
$databaseName parameter) to be created in the service specified in the call to the
RIV::OQL constructor.

v CreateTable method — You specified the name of the database table (in the
$tableName parameter) to be created in the database specified in the call to the
CreateDB method.

Example Usage

The following example shows how to insert the record specified in the \%record
parameter in:
v A database called finders.
v A table called despatch.

Note:

The service used to create the RIV::OQL object ($oql->) in a previous call to the
RIV::OQL constructor has to be Disco.
%record = (m_Creator => ’PerlDetails’,
m_Name => ’foo’,
m_IpAddress => ’123.1.2.3’,);
$oql->Insert(’finders’, ’despatch’, \%record);

Returns

Upon completion, the Insert method does not return any records.

See Also
v “RIV::OQL Constructor” on page 97
v “CreateDB” on page 98
v “CreateTable” on page 98

Appendix A. RIV Modules Reference 101

Print
The Print method prints records obtained as a result of a database query.

Method Synopsis
Print($data)

Parameters

$data Specifies a reference to an array of hash lists that represent the records
obtained from the SELECT statement.

Description

The Print method prints the records obtained as a result of a query.

Example Usage

The following example shows how to:
v Use the Select method to execute a SELECT statement.
v Use the RIV::GetResult method to specify the number of seconds to wait (in the

example, 10 seconds) for input before returning.
v Print the data specified in $data.
$oql->Select(’class’,’activeClasses’, ’ALL’);
my ($type, $data) = $oql->RIV::GetResult(10);
Print ($data);

Returns

Upon completion, the Print method does not return any records.

See Also
v “RIV::GetResult” on page 63

Select
The Select method executes a specific OQL statement.

Method Synopsis
Select($databaseName, $tableName, $columnName)

Parameters

$databaseName
Specifies the name of the database in which the OQL statement is to be
executed.

$tableName
Specifies the name of the table in the specified database ($databaseName) in
which the OQL statement is to be executed.

$columnName
Specifies the name of the column for which the results are to be returned.
If all entries are to be returned, set the $columnName parameter to ALL.

102 IBM Tivoli Network Manager IP Edition: Perl API Guide

Description

The Select method executes the following OQL statement:
select $columnName from $dbName.$tableName;

When the $columnName parameter is set to ALL, the Select method executes the
following OQL statement:
select * from $dbName.$tableName;

You created this database and database table in previous calls to the:
v RIV::OQL constructor — You specified the name of a service (in the $rivService

parameter) to indicate the internal database to which this RIV::OQL session object
interacts.

v CreateDB method — You specified the name of the database (in the
$databaseName parameter) to be created in the service specified in the call to the
RIV::OQL constructor.

v CreateTable method — You specified the name of the database table (in the
$tableName parameter) to be created in the database specified in the call to the
CreateDB method.

Example Usage
$statement = "select * from master.entityByName;";
$oql->Send($statement, 1);
my ($type, $data) = $oql->RIV::GetResult(10);

The results are obtained by using the RIV::GetResult method. For example:
$oql->Select(’class’, ’activeClasses’, ’ALL’);
my ($type, $data) = $oql->RIV::GetResult(10);

In the previous example:
v The $type parameter specifies the tag OQLQuery.
v The $data parameter specifies a reference to an array of hash lists that represents

the records obtained from the OQL database query.
v All records are received from the database table called activeClasses that

resides in the database called class. In this case, the service to which this OQL
session is connected must be Class.

Returns

The results are obtained by using the RIV::GetResult method.

See Also
v “RIV::GetResult” on page 63
v “RIV::OQL Constructor” on page 97
v “CreateDB” on page 98
v “CreateTable” on page 98

Appendix A. RIV Modules Reference 103

Send
The Send method provides a way to communicate with the databases.

Method Synopsis
Send($statement, $returnResults)

Parameters

$statement
Specifies any valid OQL statement.

$returnResults
Specifies whether to return results. This parameter takes one of the
following values:
v 1 – Specify the value 1 for database queries (for example, OQL

statements such as select and show) that return results.
v 0 – Specify the value 0 (zero) for database queries (for example, OQL

statements such as insert, update, and delete) that do not return
results.

Description

The Send method provides a way to communicate with the databases. The
$statement parameter specifies any valid OQL statement that the Send method
executes. The $returnResults parameter indicates whether you are interested in the
results of the OQL statement. For example, when an OQL select statement is
executed and you are interested in the results, the $returnResults parameter must be
set to the value 1. The RIV::GetResult method is used to receive the results.

Example Usage
$statement = "select * from master.entityByName;";
$oql->Send($statement, 1);
my ($type, $data) = $oql->RIV::GetResult(10);

Returns

Upon completion, the Send method returns the results of the OQL statement. If you
set $returnResults to 0 (zero), the Send method does not return any records.

See Also
v “RIV::GetResult” on page 63
v “Select” on page 102

Update
The Update method updates records that currently reside in the database.

Method Synopsis
Update($databaseName, $tableName, $setClause, $whereClause)

Parameters

$databaseName
Specifies the name of the database in which the record is to be updated.

104 IBM Tivoli Network Manager IP Edition: Perl API Guide

$tableName
Specifies the name of the table in the specified database ($databaseName) in
which the record is to be updated.

$setClause
Specifies the clause that defines set the variable to.

$whereClause
Specifies the clause that defines where the variable is.

Description

The Update method updates records that already reside in the database and
database table specified in the $databaseName and $tableName parameters,
respectively. Calling the Update method is equivalent to executing the following
OQL statement:
UPDATE $databaseName.$tableName SET $setClause WHERE $whereClause;

You created this database and database table in previous calls to the:
v RIV::OQL constructor — You specified the name of a service (in the $rivService

parameter) to indicate the internal database to which this RIV::OQL session object
interacts.

v CreateDB method — You specified the name of the database (in the
$databaseName parameter) to be created in the service specified in the call to the
RIV::OQL constructor.

v CreateTable method — You specified the name of the database table (in the
$tableName parameter) to be created in the database specified in the call to the
CreateDB method.

Example Usage

The following example does the following:
v Updates specific records in the table called entityByName that resides in the

database called master.
v The specific records updated are those that have EntityName foo to EntityName

ppp.
$oql->Update(’master’, ’entityByName’, "EntityName=’ppp’",
"EntityName=’foo’");

Returns

Upon completion, the Update method does not return any records.

See Also
v “RIV::OQL Constructor” on page 97
v “CreateDB” on page 98
v “CreateTable” on page 98

Appendix A. RIV Modules Reference 105

RIV::Param module reference
The RIV::Param module provides an interface for parsing standard and Network
Manager application-specific command line arguments.

The RIV::Param module provides a constructor that creates a new RIV::Param
object that you use to call methods that perform the following tasks:
v Obtain the name of a command
v Obtain the name of a domain
v Print a brief usage explanation to standard output

The constructor and methods are described in reference (man) page format.

RIV::Param module synopsis
The RIV::Param module synopsis shows how to make calls to the constructor and
parameter operation methods that this module provides.

The comments provided in the synopsis serve as a quick reference as to the
purpose of the constructor and parameter operation methods. The reference (man)
pages for the constructor and each method provide the details.
Load the RIV::Param module
use RIV::Param;
#
These are the RIV::Param module constants used to specify
whether a command line parameter takes no arguments or a
single argument and whether it is mandatory.
RivParamNoArg, RivParamSingleArg;
RivParamMandatory;
#
Call the RIV::Param constructor. The RIV::Param constructor
returns to $param a new RIV::Param object.
#
$param = RIV::Param::new(\%paramHash, \@usageStrings, \$helpMessage);
#
Use the RIV::Param object ($param->) to invoke the methods
that the RIV::Param module provides.

Call the Usage method to print a brief usage explanation to
standard output.
$param->Usage($errorCode);
#
Call the DomainName method to obtain the name of the domain.
$domainName = $param->DomainName();
#
Call the CommandName method to obtain the name of the command.
$commandName = $param->CommandName();

RIV::Param Constructor
The RIV::Param constructor creates and initializes a new RIV::Param object.

Constructor
$param = RIV::Param::new([\%paramHash,\@usageStrings, \$helpMessage])

Parameters

\%paramHash
Specifies a reference to a hash used to specify application-specific

106 IBM Tivoli Network Manager IP Edition: Perl API Guide

command line arguments. Each hash key (index) represents a command
line switch and its associated hash value is an array with the following
elements:
v element 0 — Is a flags element that specifies a bitwise OR that indicates:

– Whether the command line switch takes an argument.
– Whether the switch is mandatory
The flags element makes use of the package constants described in
“Package Constants.”

v element 1 — Is a scalar variable reference or undef value. You initialize
the scalar variable reference with the appropriate value (a parameter
from the command line or 1).

The \%paramHash parameter is optional.

\@usageStrings
Specifies either a string that contains usage information or an array
reference that contains an element for each of the nonstandard command
line argument scenarios. If the application takes only standard arguments,
this constructor argument (if specified) should be set to the undef value.

The \@usageStrings parameter is optional.

\$helpMessage
Specifies a string reference that contains explanatory information that is
written to standard output, in addition to standard help information, when
the -help command line argument is specified.

The \$helpMessage parameter is optional.

Package Constants

The RIV::Param constructor's \%paramHash parameter makes use of the following
package constants:
v RivParamNoArg — Specifies that the command line parameter takes no

arguments.
v RivParamSingleArg — Specifies that the command line parameter takes one

argument.
v RivParamMandatory — Specifies that the command line parameter is mandatory,

and that it is a fatal error for the parameter to be missing.

Description

The RIV::Param constructor creates and initializes a new RIV::Param object from
the application-specific command line arguments specified in the \%paramHash
parameter. Each new RIV::Param object also encapsulates the supported standard
command line arguments. Thus, Network Manager client/server and Agent
applications can make use of these standard command line arguments in addition
to the application-specific command line arguments.

If you call the RIV::Param constructor without specifying any of the optional
parameters, the new RIV::Param object provides access to the standard command
line arguments.

Appendix A. RIV Modules Reference 107

Example Usage No Parameters

The following code shows a call to the RIV::Param constructor without specifying
any of the optional parameters. The newly created RIV::Param object is then passed
to the RIV::Agent constructor, which returns a RIV::Agent object that provides a
discovery agent application session. In this example, the discovery agent called
PerlDetails (the name specified in the second parameter of the RIV::Agent
constructor) can make use of the standard command line arguments.
.
.
.
sub Init{

my $param=RIV::Param::new();
$agent=RIV::Agent::new($param,"PerlDetails");

}
.
.
.

Example Usage Three Parameters

The example described in this section shows a call to the RIV::Param constructor
that specifies the three optional parameters.

The following code defines a reference to a hash called %CmdLineArgs used to
specify application-specific command line arguments. The %CmdLineArgs hash is
passed as the first parameter to the RIV::Param constructor:
.
.
.
my $subject;
my $process = ’Model’;
my $messageClass = ’NOTIFY’;
my $verbose;
my %CmdLineArgs = (

"-subject" => [RivParamSingleArg , \$subject],
"-process" => [RivParamSingleArg , \$process],
"-messageClass" => [RivParamSingleArg , \$messageClass],
"-verbose" => [RivParamNoArg, \$verbose]

);
.
.
.

The following list provides brief descriptions of the application-specific command
line arguments defined in the %CmdLineArgs hash.
v -subject — Specifies a command line argument that takes one argument (as

indicated by the RivParamSingleArg package constant). This command line
argument also specifies a reference to a scalar value, \$subject. It is expected
that a user would supply a specific subject on the command line.

v -process — Specifies a command line argument that takes one argument (as
indicated by the RivParamSingleArg package constant). This command line
argument also specifies a reference to a scalar value, \$process. It is expected
that a user would supply the specific process that is of interest (for example,
Class, Config, Event, and so forth) on the command line. The default process is
Model.

v -messageClass — Specifies a command line argument that takes one argument
(as indicated by the RivParamSingleArg package constant). This command line
argument also specifies a reference to a scalar value, \$messageClass. It is

108 IBM Tivoli Network Manager IP Edition: Perl API Guide

expected that a user would supply the class of messages that are of interest (for
example, QUERY, STATUS, and so forth) on the command line. The default message
class is NOTIFY.

v -verbose — Specifies a command line argument that takes no arguments (as
indicated by the RivParamNoArg package constant). This command line argument
also specifies a reference to a scalar value, \$verbose. It is expected that a user
would specify this command line argument to explicitly print out details of
nested fields.

The following code defines a usage string called @Usage that provides information
on how to use the command line for this application. The @Usage array is passed as
the second parameter to the RIV::Param constructor:
.
.
.
my @Usage = (

"[-subject <subject> -process [Model|Disco|Ctrl|...]
-messageClass [NOTIFY|QUERY|...] "

);
.
.
.

The following code defines a string reference called $helpData that contains
explanatory information about the application-specific command line arguments
and other pertinent information. The explanatory information also includes
descriptions of the standard command line arguments (-domain, -debug, and
-help). The $helpData string reference is passed as the third parameter to the
RIV::Param constructor:
my $helpData = "\n
The ITNMIP_Listener perl script is intended to listen on the supplied subject
and print out the messages received.

The arguments are
-domain <domain> = Name of the domain to retrieve data from
-debug [0-4] = Required debug level
-help = This information
-verbose = Explicitly print out details of nested fields
-subject = The specific subject to listen to (this will not include the domain)
-process = The process to listen to (e.g. Model, Class, Event, Config, Ctrl ,

Disco , PingFinder)
-messageClass = The class of messages of interest. Not all processes support
all classes. The common ones of interest are NOTIFY, QUERY, STATUS

The most common arguments to use are
-process Model -messageClass NOTIFY : (default) - Listen for the models
updates on topology changes (old style)
-process Model -messageClass TOPOLOGY : (default) - Listen for the models
updates on topology changes (new style)
-process Disco -messageClass STATUS : - Listen to disco broadcasts on the
current state of the discovery.
-process DNCIM2NCIM -messageClase NOTIFY : - Listen to Disco to Model
DNCIM2NCIM updates.
-process ITNMSTATUS -messageClass NOTIFY : - Listen to ITNM status events.

The process is capable of listening on any subject on the message broker bus
but will not decode the output beyond printing out the contents of the message.

The syntax for message broker subjects is

/<subject>/<sub-subject>/<sub-sub-subject>/....

Appendix A. RIV Modules Reference 109

All ITNM IP subjects begin \’ITNM/\’ and have the domain appended so the
model notify subject for domain TESTDOMAIN is

/ITNM/MODEL/NOTIFY/TESTDOMAIN

\n";

The following code shows the call to the RIV::Param constructor using the three
previously defined parameters: \%CmdLineArgs, \@Usage, and \$helpData. Note the
call to the die function to exit the script if the RIV::Param constructor fails to create
a new RIV::Param object.
.
.
.
my $param = RIV::Param::new(\%CmdLineArgs, \@Usage, \$helpData);
die "Can’t create RIV::Param" unless (defined $param);
.
.
.

Returns

Upon completion, the RIV::Param constructor returns a new RIV::Param object.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95
v “Usage” on page 112
v “RIV::Param module overview” on page 8

CommandName
The CommandName method returns the name of the specified command.

Method Synopsis
RIV::Param::CommandName()

Parameters

None

Description

The CommandName method returns the name of the command specified on the
command line.

Use the RIV::Param object returned in a previous call to the RIV::Param constructor
to invoke the CommandName method. For example: $param->CommandName.

Example Usage

The following code shows a call to the CommandName method. Note that the
CommandName method is invoked through the newly created RIV::Param object
returned to the $param variable.

110 IBM Tivoli Network Manager IP Edition: Perl API Guide

.

.

.
my $param = RIV::Param::new(\%cmdLineArgs, \@Usage, \$helpData);
die "Can’t create RIV::Param" unless (defined $param);
.
.
.

my $command = $param->CommandName();
.
.
.

Returns

Upon completion, the CommandName method returns the name of the command
specified on the command line.

See Also
v “RIV::Param Constructor” on page 106

DomainName
The DomainName method returns the name of the specified domain.

Method Synopsis
RIV::Param::DomainName()

Parameters

None

Description

The DomainName method returns the name of the domain specified on the command
line for the -domain standard command line argument.

Use the RIV::Param object returned in a previous call to the RIV::Param constructor
to invoke the DomainName method. For example: $param->DomainName.

Example Usage

The following code shows a call to the DomainName method. Note that the
DomainName method is invoked through the newly created RIV::Param object
returned to the $param variable.
.
.
.
my $param = RIV::Param::new(\%cmdLineArgs, \@Usage, \$helpData);
die "Can’t create RIV::Param" unless (defined $param);
.
.
.
die "ncp_disco must be running under domain ",

$param->DomainName(),
" - unable to query the disco.config table"
unless $dbData;

Appendix A. RIV Modules Reference 111

print "...disco is running under domain ", $param->DomainName(), "\n" if $debug;
.
.
.

Returns

Upon completion, the DomainName method returns the name of the domain
specified on the command line for the -domain standard command line argument.

See Also
v “RIV::Param Constructor” on page 106

Usage
The Usage method writes a brief usage explanation to standard output.

Method Synopsis
RIV::Param::Usage($errorCode)

Parameters

$errorCode
Specifies either a status or the undef value. The status gets written to
standard output.

Description

The Usage method writes a brief usage explanation to standard output and then
exits with the status specified in the $errorCode parameter, if defined. If you
specified the undef value in the $errorCode parameter, the Usage method returns to
the caller.

Use the RIV::Param object returned in a previous call to the RIV::Param constructor
to invoke the Usage method. For example: $param->Usage.

Example Usage

The following code shows a call to the Usage method. In this example, an error
code of 1 is passed. Note that the Usage method is invoked through the newly
created RIV::Param object returned to the $param variable.
my @_Usage = (# usage string suffixes
"<node> [async]"
);

#
Read and parse the command line, standard args are hidden
#
my $param = RIV::Param::new({

"-v" => [$RIV::Param::NoArg, \$Verbose],
}, \@_Usage);
die "RIV::Param::new failed" unless defined $param;

my $node = shift @ARGV;
my $what = shift @ARGV;
$what = "" unless defined $what;

$param->Usage(1)
unless (defined $node && $node ne "");

112 IBM Tivoli Network Manager IP Edition: Perl API Guide

Returns

Upon completion, the Usage method writes a brief usage message to standard
output and the status specified in the $errorCode parameter and simply exits. If the
$errorCode parameter is set to the undef value, the Usage method returns to the
caller.

See Also
v “RIV::Param Constructor” on page 106

RIV::Record module reference
The RIV::Record module provides a data structure to store the network entity.

The RIV::Record module provides a constructor that creates and initializes a
RIV::Record data structure. This module also provides methods to perform the
following operations:
v Add local neighbors
v Add remote neighbors
v Get local neighbors
v Get remote neighbors
v Print the current records

The constructor and methods are described in reference (man) page format.

RIV::Record module synopsis
The RIV::Record synopsis shows how to make calls to the constructor and local
and remote neighbors operation methods that this module provides.
use RIV::Agent;
use RIV::Record;
my($tag, $data) = $agent->RIV::GetResult(-1);
if($tag eq ’NE’){
foreach $key (@$data){
$NE = RIV::Record::new($key);
}
}
$NE->AddLocalNeighbour($refLocalNeighbour);
$NE->AddRemoteNeighbour($refLocalNeighbour, $refRemoteNeighbour);
$arrayVarOps = $agent->SnmpGetNext($NE, $mibVariable);
$NE->AddLocalNeighbourTag($tagName, $arrayVarOps);
$NE->AddRemoteNeighbourTag($reflocalNeighbour, $tagName, $arrayVarOps);
@localNeighbours = $NE->GetLocalNeighbours();
@remoteNeighbours = $NE->GetRemoteNeighbours($refLocalNeighbour);
$NE->Print();

RIV::Record Constructor
The RIV::Record constructor creates and initializes a new RIV::Record object.

Constructor
new($refNE)

Parameters

$refNE
Specifies a reference to a hash list. The hash list is the mechanism used to
store network entity records retrieved from the discovery engine, DISCO.

Appendix A. RIV Modules Reference 113

Description

The RIV::Record constructor creates and initializes a new RIV::Record object. This
object stores network entity records retrieved from DISCO.

Example Usage

The following code fragment illustrates a typical loop for receiving records from
DISCO:
while (1){
my($tag, $data) = $agent->RIV::GetResult(-1);
Get the network entities
print "TAG :", $tag, "\n";
if($tag eq ’NE’){
foreach $key (@$data){
$ne = new RIV::Record($key);
}
}
}

Returns

Upon completion, the RIV::Record constructor returns a RIV::Record object.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::GetResult” on page 63

AddLocalNeighbour
The AddLocalNeighbour method adds a local neighbor.

Method Synopsis
AddLocalNeighbour($refNbr)

Parameters

$refNbr
Specifies a reference to a hash list that defines the local neighbor using a
set of key value pairs (varBinds).

Description

The AddLocalNeighbour method adds a local neighbor whose hash list reference is
$refNbr.

Example Usage
$localNbr{’m_IpAddress’} = ’1.2.3.4’;
$localNbr{’m_IfIndex’} = 2;
$NE->AddLocalNeighbour(\%localNbr);

Returns

Upon completion, the AddLocalNeighbour method does not return any records.

114 IBM Tivoli Network Manager IP Edition: Perl API Guide

AddLocalNeighbourTag
The AddLocalNeighbourTag method adds a tag (varBind) to a local neighbor.

Method Synopsis
AddLocalNeighbourTag($tag, $refVarOp)

Parameters

$tag Specifies the key value for the varBind.

$refVarOp
Specifies a reference to an array of varops.

Description

The AddLocalNeighbourTag method adds to local neighbors a varBind whose key is
defined by the $tag parameter and the value defined by the $refVarOp parameter (a
reference to an array of varops). The key and value are added sequentially, that is,
the values in the @$refVarOp array are assumed to be in the same order as the local
neighbor array. If local neighbors do not exist, then AddLocalNeighbourTag creates
them.

Example Usage
$refLifindex=$agent->SnmpGetNext($TestNE, ’ipAdEntIfIndex’);
$TestNE->AddLocalNeighbourTag("m_IfIndex", $refLifIndex);

Returns

Upon completion, the AddLocalNeighbourTag method does not return any records.

See Also
v “RIV::Agent Constructor” on page 73
v “SnmpGetNext” on page 93

AddRemoteNeighbour
The AddRemoteNeighbour method adds a remote neighbor.

Method Synopsis
AddRemoteNeighbour($refLocalNbr, $refRemoteNbr)

Parameters

$refLocalNbr
Specifies a reference to the hash list that defines a local neighbor and to
which list the remote neighbor is to be added.

$refRemoteNbr
Specifies a reference to a hash list that defines the remote neighbor using a
set of key value pairs (varBinds).

Description

The AddRemoteNeighbour method adds a remote neighbor whose hash list reference
is $refRemoteNbr to the local neighbor whose hash list reference is $refLocalNbr.

Appendix A. RIV Modules Reference 115

Example Usage
$remoteNbr{’m_IpAddress’} = ’1.2.5.6’;
$NE->AddRemoteNeighbour($localNbr, \%remoteNbr);

Returns

Upon completion, the AddRemoteNeighbour method does not return any records.

AddRemoteNeighbourTag
The AddRemoteNeighbourTag method adds a tag (varBind) to a remote neighbor.

Method Synopsis
AddRemoteNeighbourTag($refLocalNbr, $tag, $refVarOp)

Parameters

$refLocalNbr
Specifies a reference to the local neighbor to which the remote neighbors
are to be added.

$tag Specifies the key value for the varBind.

$refVarOp
Specifies a reference to an array of varops.

Description

The AddRemoteNeighbourTag method adds to remote neighbors a varBind whose
key is defined by the $tag parameter and the value defined by the $refVarOp
parameter (a reference to an array of varops). The key and value are added
sequentially, that is, the values in the @$refVarOp array are assumed to be in the
same order as the remote neighbor array. If remote neighbors do not exist, then
AddRemoteNeighbourTag creates them.

The $tag parameter specifies a reference to the local neighbor to which the remote
neighbor currently resides or will be added (if it does not currently exist).

Example Usage
$refRifIndex = $agent->SnmpGetNext($TestNE,...);
$TestNE->AddRemoteNeighbourTag($refLocal, "m_IfIndex", $refRifIndex);

Returns

Upon completion, the AddRemoteNeighbourTag method does not return any records.

See Also
v “RIV::Agent Constructor” on page 73
v “SnmpGetNext” on page 93

116 IBM Tivoli Network Manager IP Edition: Perl API Guide

GetLocalNeighbours
The GetLocalNeighbours method returns an array of local neighbors.

Method Synopsis
GetLocalNeighbours()

Parameters

None

Description

The GetLocalNeighbours method returns an array of local neighbors.

Example Usage
@localNeighbours = $NE->GetLocalNeighbours();

Returns

Upon completion, the GetLocalNeighbours method returns an array of local
neighbors (as a reference to a hash list).

GetRemoteNeighbours
The GetRemoteNeighbours method returns an array of remote neighbors.

Method Synopsis
GetRemoteNeighbours($refLocalNeighbour)

Parameters

$refLocalNeighbour
Specifies a reference to the hash list that defines a local neighbor and for
which list the remote neighbor is to be returned.

Description

The GetRemoteNeighbours method returns an array of remote neighbors associated
with the specified local neighbor. The local neighbor is specified in the hash list
passed to the $refLocalNeighbour parameter.

Example Usage
@remoteNeighbours = $NE->GetRemoteNeighbours($refLocalNeighbour);

Returns

Upon completion, the GetRemoteNeighbours method returns an array of remote
neighbors (as a reference to a hash list).

Appendix A. RIV Modules Reference 117

Print
The Print method prints the current record.

Method Synopsis
Print()

Parameters

None

Description

The Print method prints the current record.

Example Usage
$NE->Print();

Returns

Upon completion, the Print method does not return any records.

RIV::RecordCache module reference
The RIV::RecordCache module provides an interface to access a record cache file.

The RIV::RecordCache module provides a constructor that creates and initializes a
RIV::RecordCache file object. After creating this object, you can call methods that:
v Create or open an existing RIV::RecordCache file object
v Add a record to this RIV::RecordCache file object and obtain the key under

which this record was added
v Retrieve all the records that reside in this RIV::RecordCache file object
v Retrieve a specific record from this RIV::RecordCache file object using the

record's associated key

The constructor and methods are described in reference (man) page format.

RIV::RecordCache module synopsis
The RIV::RecordCache module synopsis shows how to make calls to the
constructor and record cache operation methods that this module provides.
use RIV::RecordCache;

$recordCache = new RIV::RecordCache($rivSession, $cacheName [,$cacheLocation]);
my $recKey = $recordCache->CacheRecord($record);
$recordCache->GetRecords();
$recordCache->GetRecord($recKey);

118 IBM Tivoli Network Manager IP Edition: Perl API Guide

RIV::RecordCache Constructor
The RIV::RecordCache constructor creates and initializes a new RIV::RecordCache
file object.

Constructor
new($rivSession, $cacheName [,$cacheLocation])

Parameters

$rivSession
Specifies a blessed reference to either a RIV::App or RIV::Agent object.
More specifically, this is a RIV::App or RIV::Agent application object
returned in a previous call to the RIV::App or RIV::Agent constructor.

$cacheName
Specifies the name of the RIV::RecordCache file object to be created or read
from.

$cacheLocation
Specifies the path to the RIV::RecordCache file object.

This parameter is optional. If you do not pass a value to this parameter,
the path to the RIV::RecordCache file object is assumed to be the
$NCHOME/var/precision directory.

Description

The RIV::RecordCache constructor creates and initializes a new RIV::RecordCache
file object with the name as specified in the $cacheName parameter and the location
as specified in the $cacheLocation parameter.

Example Usage

The following code fragment illustrates a typical call to the RIV::RecordCache
constructor:
$app = RIV::App::new();
$cache = RIV::RecordCache::new($app, "Disco.Cache.Details.returns.MYDOMAIN",

"/opt/netcool/var/precision/");
}

Returns

Upon completion, the RIV::RecordCache constructor returns a RIV::RecordCache
file object. This is the object upon which you can perform add and retrieve record
operations.

See Also
v “RIV module reference” on page 53
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95
v “CacheRecord” on page 120
v “GetRecord” on page 120
v “GetRecords” on page 121

Appendix A. RIV Modules Reference 119

CacheRecord
The CacheRecord method attempts to add the specified record to the specified
cache.

Method Synopsis
CacheRecord($record)

Parameters

$record
Specifies the record that is to be added to the cache. This record is
expressed as a hash.

Description

The CacheRecord method adds the record specified in the $record parameter to the
specified cache. You specified the name of the cache in a previous call to the
RIV::RecordCache constructor.

Example Usage

The following example illustrates a typical call to the CacheRecord method, where
the method caches the record (hash) called $myRec:
$cache->CacheRecord($myRec);

Returns

Upon completion, the CacheRecord method returns:
v The value -1 to indicate that the attempt to add the record to the cache was

unsuccessful. The method displays an appropriate error message requesting that
you check to ensure that the cache is valid.

v The key that the record was added under if the attempt to add the record to the
cache was successful.

See Also
v “RIV::RecordCache Constructor” on page 119

GetRecord
The GetRecord method retrieves from the cache a record associated with the
specified key.

Method Synopsis
GetRecord($recordKey)

Parameters

$recordKey
Specifies the key associated with the record to be retrieved from the cache.
This key was returned in a previous call to the CacheRecord method after it
successfully inserted the record into the cache.

Description

The GetRecord method retrieves from the cache a record associated with the key
specified in the $recordKey parameter. You specified the name of the cache in a

120 IBM Tivoli Network Manager IP Edition: Perl API Guide

previous call to the RIV::RecordCache constructor.

Example Usage

The following example illustrates a typical call to the GetRecord method, where the
method returns to $record a hash from a previously specified cache that contains
several records:
my $record = $cache->GetRecord();

Returns

Upon completion, the GetRecord method returns:
v %record — Specifies a hash that represents one of the records residing in the

cache.

See Also
v “RIV::RecordCache Constructor” on page 119
v “CacheRecord” on page 120
v “GetRecords”

GetRecords
The GetRecords method retrieves from the cache a list of all the records currently
residing in it.

Method Synopsis
GetRecords()

Parameters

None

Description

The GetRecords method retrieves from the cache a list of all the records currently
residing in it. Each record is returned as a hash within a list.

Example Usage

The following example illustrates a typical call to the GetRecords method, where
the method returns to recordList an array of hashes from a previously specified
cache that contains several records:
my @recordList = $cache->GetRecords();

Returns

Upon completion, the GetRecords method returns:
v $recordList— Specifies an array of hashes, where each hash represents one of the

records in the cache.

See Also
v “RIV::RecordCache Constructor” on page 119
v “CacheRecord” on page 120
v “GetRecord” on page 120

Appendix A. RIV Modules Reference 121

RIV::SnmpAccess module reference
The RIV::SnmpAccess module provides an interface to perform SNMP-related
operations on Network Manager MIB trees.

The RIV::SnmpAccess module provides a constructor that allows you to create and
initialize a new RIV::SnmpAccess session object. After obtaining this session object,
you can call the synchronous or asynchronous versions of the SnmpGet-related
methods to perform the following operations:
v SNMP get

v SNMP get-next

v SNMP get-bulk

The RIV::SnmpAccess module also provides several utility methods that allow you
to operate on ANS.1 (Abstract Syntax Notation One) values and the MIB tree.

Note: Discovery agents implemented with this version of the Perl API should use
the SNMP methods that the RIV::Agent module provides to obtain SNMP
information from a network device.

The constructor and methods are described in reference (man) page format.

RIV::SnmpAccess module synopsis
The RIV::SnmpAccess module synopsis shows how to make calls to the constructor
and SNMP operation methods that this module provides.

Synopsis
use RIV::SnmpAccess;
$RIV::SnmpAccess::MaxAsyncConcurrent;
$snmp = new RIV::SnmpAccess($RivSession);
(\%varop) = $snmp->SnmpGet($host, $addOn, $oid [, $instance,
$splitOutput]);
$ok = $snmp->AsyncSnmpGet($tag, $host, $addOn, $oid [, $instance]);
(\@varops) = $snmp->SnmpGetNext($host, $addOn, $oid, $instance]);
$ok = $snmp->AsyncSnmpGetNext($tag, $host, $addOn, $oid [, $instance]);
(\@varops) = $snmp->SnmpGetBulk($host, $addOn, \@oidList, $nonRepeat,
$maxRepeat, [, $instance, $splitOutput]);
$ok = $snmp->AsyncSnmpGetBulk($tag, $host, $addOn, \@oidList, $nonRepeat,
$maxRepeat, [, $instance, $splitOutput]);
where:

$asn1 = $varop{ASN1};
$value = $varop{VALUE};
foreach my $vp (@varops) {
$asn1 = $vp->{ASN1};
$value = $vp->{VALUE};
...
}
($baseOid, $indexOid, $baseOidName) = $snmp->SplitOidAndIndex($fullASN1);
$asn1 = $snmp->OidToASN1($mibIdentifier);

122 IBM Tivoli Network Manager IP Edition: Perl API Guide

RIV::SnmpAccess Constructor
The RIV::SnmpAccess constructor creates and initializes a new RIV::SnmpAccess
object.

Constructor
new($rivSession)

Parameters

$rivSession
Specifies a blessed reference to either a RIV::App or RIV::Agent object.
More specifically, this is a RIV::App or RIV::Agent application object
returned in a previous call to the RIV::App or RIV::Agent constructor.

Description

The RIV::SnmpAccess constructor creates and initializes a new RIV::SnmpAccess
session object that must be a blessed reference to either a RIV::App or RIV::Agent
object.

You can create only one RIV::SnmpAccess session object in any Perl application. If
multiple domains are being supported (that is, multiple RIV::App objects) one of
the application sessions must be used as the base for the RIV::SnmpAccess session.

Example Usage
$app = new RIV::App();
$snmp = new RIV::SnmpAccess(’TEST’, ’ncp_test’);

Returns

Upon completion, the RIV::SnmpAccess constructor returns a RIV::SnmpAccess
session object.

See Also
v “RIV::Agent Constructor” on page 73
v “RIV::App Constructor” on page 95

ASN1ToOid
The ASN1ToOid method converts the specified ASN.1 value to its corresponding
OID.

Method Synopsis
ASN1ToOid($asn1)

Parameters

$ans1 Specifies the ASN.1 (Abstract Syntax Notation One) value to be converted
to its corresponding object identifier (OID).

Description

The ASN1ToOid method converts the specified ASN.1 value ($ans1) to its
corresponding OID.

Appendix A. RIV Modules Reference 123

Example Usage

The following example should return $oid as ifIndex.
$oid = $snmp->ASN1ToOid(1.3.6.1.2.1.2.2.1.11.3.6.1.2.1.2.2.1.1)

Returns

Upon completion, the ASN1ToOid method returns an OID that corresponds to the
specifiedASN.1 value ($ans1) value.

See Also
v “RIV::SnmpAccess Constructor” on page 123

AsyncSnmpGet
The AsyncSnmpGet method performs an asynchronous SNMP get operation on the
specified MIB variable.

Method Synopsis
AsyncSnmpGet($tag, $nodeIP, $addOn,
$oid [,$instance, $splitOutput])

Parameters

$tag Specifies a string that the AsyncSnmpGet method appends to SNMP_$tag. This
tag is associated with the results of an SNMP get operation. For example,
if you specify the string GET to the $tag parameter, the AsyncSnmpGet
method associates the tag SNMP_GET with the results for this SNMP get
operation.

$nodeIP
Specifies a valid host IP address.

$addOn
Specifies the suffix to the community string.

$oid Specifies the MIB variable for which you want to perform an asynchronous
SNMP get operation.

$instance
Specifies the start of the MIB subtree to retrieve. You must specify $instance
as an ASN1 string (for example, 5.3.15).

This parameter is optional.

$splitOutput
Specifies a value of true or false. If set to true (1) returns three extra keys
— OID, INDEX, and NAMEMIB. The default is false (0), that is, does not return
the three extra keys.

This parameter is optional.

Description

The AsyncSnmpGet method performs an asynchronous SNMP get operation on the
specified MIB variable (the$oid parameter). The AsyncSnmpGet method returns the
three extra keys — OID, INDEX, and NAMEMIB — only if the $splitOutput parameter is
set to true (1).

124 IBM Tivoli Network Manager IP Edition: Perl API Guide

Example Usage
$snmp->AsyncSnmpGet(’GET’, $nodeIP, "", "ifDescr", "2", 1);
($tag, $data) = $snmp->RIV::GetResult(-1);

Returns

Upon successful completion, the AsyncSnmpGet method returns the value /%varop
and the tag SNMP_$tag. If the request failed, AsyncSnmpGet returns undef. The return
value, along with the tag SNMP_$tag, are returned in a call to RIV::GetResult.

See Also
v “RIV::GetResult” on page 63
v “RIV::SnmpAccess Constructor” on page 123
v “MaxAsyncConcurrent” on page 128

AsyncSnmpGetBulk
The AsyncSnmpGetBulk method performs an asynchronous SNMP get-bulk
operation on all MIB objects in the specified MIB table.

Method Synopsis
AsyncSnmpGetBulk($tag, $nodeIP, $addOn,
$oidBindList, $nonRepeaters, $maxRepetitions
[,$instance, $splitOutput])

Parameters

$tag Specifies a string that the AsyncSnmpGetBulk method appends to SNMP_$tag.
This tag is associated with the results of an SNMP get-bulk operation. For
example, if you specify the string GETBULK to the $tag parameter, the
AsyncSnmpGetBulk method associates the tag SNMP_GETBULK with the results
for this SNMP get-bulk operation.

$nodeIP
Specifies a valid a host IP address.

$addOn
Specifies the suffix to the community string.

$oidBindList
Specifies a reference to an array that contains the MIB variables for which
you want to perform an asynchronous SNMP get-bulk operation. The
following is an example of an array that contains two MIB variables:
$oidBindList = \@oids;
where,
@oids = (’sysDescr’, ’ifIndex’);

$nonRepeaters
Specifies the number of MIB variables at the start of the list of @oids that
return a single value. In the previous example, the @oids list contains two
MIB variables: sysDescr and ifIndex. Only the sysDescr MIB variable
returns a single value. Thus, this parameter would be set to the value 1 for
the previous example.

$maxRepetitions
Specifies the number of MIB variable values in the table to be returned. For
example, if you specify the value 2 to the $maxRepetitions parameter, the
AsyncSnmpGetBulk method returns only the values for the first two MIB

Appendix A. RIV Modules Reference 125

variables in the table. To return values for all MIB variables in the table,
specify a large number for this parameter.

This parameter is relevant for MIB variables that return a table, for
example, ifIndex.

$instance
Specifies the start of the MIB subtree to retrieve. You must specify $instance
as an ASN1 string (for example, 5.3.15).

This parameter is optional.

$splitOutput
Specifies a value of true or false. If set to true (1) returns three extra keys
— OID, INDEX, and NAMEMIB. The default is false (0), that is, does not return
the three extra keys.

This parameter is optional.

Description

The AsyncSnmpGetBulk method performs an asynchronous SNMP get-bulk
operation on all MIB objects specified in $oidBindList. The SnmpGetBulk method
returns the three extra keys — OID, INDEX, and NAMEMIB — only if the $splitOutput
parameter is set to true (1).

Notes

The parameters $nonRepeaters and $maxRepetitions must be defined. No default
values are specified for these parameters.

Example Usage
@oids=(’sysDescr’, ’sysContact’, ’sysUpTime’, ’ipInReceives’,
’ipOutRequests’, ’ipOutDiscards’, ’ipForwDatagrams’, ’tcpCurrEstab’,
’ifDescr’;
$snmp->AsyncSnmpGetBulk("GETBULK", $nodeIP, "", \@oids, 8, 100);
($tag, $data) = $snmp->RIV::GetResult(-1);

Returns

Upon completion, the AsyncSnmpGetBulk method returns a reference to an array of
varops and the tag SNMP_$tag. If the request failed, AsyncSnmpGetBulk returns undef.
The return value, along with the tag SNMP_$tag, are returned in a call to
RIV::GetResult.

See Also
v “RIV::GetResult” on page 63
v “RIV::SnmpAccess Constructor” on page 123
v “MaxAsyncConcurrent” on page 128

126 IBM Tivoli Network Manager IP Edition: Perl API Guide

AsyncSnmpGetNext
The AsyncSnmpGetNext method performs an asynchronous SNMP get-next
operation on the specified MIB variable.

Method Synopsis
AsyncSnmpGetNext($tag, $nodeIP, $addOn,
$oid [,$instance, $splitOutput])

Parameters

$tag Specifies a string that the AsyncSnmpGetNext method appends to SNMP_$tag.
This tag is associated with the results of an SNMP get-next operation. For
example, if you specify the string GETNEXT to the $tag parameter, the
AsyncSnmpGetNext method associates the tag SNMP_GETNEXT with the results
for this SNMP get-next operation.

$nodeIP
Specifies a valid host IP address.

$addOn
Specifies the suffix to the community string.

$oid Specifies the MIB variable for which you want to perform an asynchronous
SNMP get-next operation.

$instance
Specifies the start of the MIB subtree to retrieve. You must specify $instance
as an ASN1 string (for example, 5.3.15).

This parameter is optional.

$splitOutput
Specifies a value of true or false. If set to true (1) returns three extra keys
— OID, INDEX, and NAMEMIB. The default is false (0), that is, does not return
the three extra keys.

This parameter is optional.

Description

The AsyncSnmpGetNext method performs an asynchronous SNMP get-next
operation on the specified MIB variable ($oid). The AsyncSnmpGetNext method
returns the three extra keys — OID, INDEX, and NAMEMIB — only if the $splitOutput
parameter is set to true (1).

Example Usage
$snmp->AsyncSnmpGetNext(’GETNEXT’, $nodeIP, "", "ifDescr");
($tag, $data) = $snmp->RIV::GetResult(-1);

Returns

Upon successful completion, the AsyncSnmpGetNext method returns a reference to
an array of varops and the tag SNMP_$tag. If the request failed, AsyncSnmpGetNext
returns undef. The return value, along with the tag SNMP_$tag, are returned in a call
to RIV::GetResult.

See Also
v “RIV::GetResult” on page 63
v “RIV::SnmpAccess Constructor” on page 123

Appendix A. RIV Modules Reference 127

v “MaxAsyncConcurrent”

GetMibHash
The GetMibHash method gets the entire MIB tree.

Method Synopsis
GetMibHash()

Parameters

None

Description

The GetMibHash method gets the entire MIB tree by browsing the files that exist in
the $NCHOME/mibs directory.

Example Usage
%tree=$snmp->GetMibHash();

Returns

Upon completion, the GetMibHash method returns the complete MIB tree
constructed as a result of browsing the files that reside in the $NCHOME/mibs
directory.

See Also
v “RIV::SnmpAccess Constructor” on page 123

MaxAsyncConcurrent
The MaxAsyncConcurrent package variable sets the maximum number of concurrent
asynchronous requests.

Variable Synopsis
$RIV::SnmpAccess::MaxAsyncConcurrent

Description

The MaxAsyncConcurrent package variable sets the maximum number of concurrent
asynchronous requests. The default is ten concurrent asynchronous requests. The
value of this variable is used when the first asynchronous request is executed.
Thereafter, any changes to this package variable are ignored.

You use this package variable with the following asynchronous methods:
v AsyncSnmpGet

v AsyncSnmpGetNext

v AsyncSnmpGetBulk

See Also
v “AsyncSnmpGet” on page 124
v “AsyncSnmpGetNext” on page 127
v “AsyncSnmpGetBulk” on page 125

128 IBM Tivoli Network Manager IP Edition: Perl API Guide

OidToASN1
The OidToASN1 method converts the specified OID to its corresponding ASN.1
value.

Method Synopsis
OidToASN1($oid)

Parameters

$oid Specifies the object identifier (OID) to be converted to its corresponding
ASN.1 (Abstract Syntax Notation One) value.

Description

The OidToASN1 method converts the specified OID ($oid) to its corresponding
ASN.1 value.

Example Usage
$asn1 = $snmp->OidToASN1(’ifDescr’);

Returns

Upon completion, the OidToASN1 method returns an ASN.1 value that corresponds
to the specified OID ($oid).

See Also
v “RIV::SnmpAccess Constructor” on page 123

SnmpGet
The SnmpGet method performs an SNMP get operation on the specified MIB
variable.

Method Synopsis
SnmpGet($nodeIP, $addOn, $oid
[,$instance, $splitOutput])

Parameters

$nodeIP
Specifies a valid host IP address.

$addOn
Specifies the suffix to the community string.

$oid Specifies the MIB variable for which you want to perform an SNMP get
operation.

$instance
Specifies the start of the MIB subtree to retrieve. You must specify $instance
as an ASN1 string (for example, 5.3.15).

This parameter is optional.

$splitOutput
Specifies a value of true or false. If set to true (1) returns three extra keys
— OID, INDEX, and NAMEMIB. The default is false (0), that is, does not return
the three extra keys.

Appendix A. RIV Modules Reference 129

This parameter is optional.

Description

The SnmpGet method performs an SNMP get operation on the specified MIB
variable ($oid). The SnmpGet method returns the three extra keys — OID, INDEX, and
NAMEMIB — only if the $splitOutput parameter is set to true (1).

Example Usage
$vap = $snmp->SnmpGet($nodeIP, "", "ifDescr", 1);
print "$vap->{ASN1}, $vap->{VALUE}", "\n";

Returns

Upon completion, the SnmpGet method returns /%varop, where the %varop keys are
ASN1 and VALUE.

See Also
v “RIV::SnmpAccess Constructor” on page 123

SnmpGetBulk
The SnmpGetBulk method performs an SNMP get-bulk operation on all MIB objects
in the specified MIB table.

Method Synopsis
SnmpGetBulk($nodeIP, $addOn, $oidBindList,
$nonRepeaters, $maxRepetitions
[,$instance, $splitOutput])

Parameters

$nodeIP
Specifies a valid host IP address.

$addOn
Specifies the suffix to the community string.

$oidBindList
Specifies a reference to an array that contains the MIB variables for which
you want to perform an SNMP get-bulk operation. The following is an
example of an array that contains two MIB variables:
$oidBindList = \@oids;
where,
@oids = (’sysDescr’, ’ifIndex’);

$nonRepeaters
Specifies the number of MIB variables at the start of the list of @oids that
return a single value. In the previous example, the @oids list contains two
MIB variables: sysDescr and ifIndex. Only the sysDescr MIB variable
returns a single value. Thus, this parameter would be set to the value 1 for
the previous example.

$maxRepetitions
Specifies the number of MIB variable values in the table to be returned. For
example, if you specify the value 2 to the $maxRepetitions parameter, the
SnmpGetBulk method returns only the values for the first two MIB variables
in the table. To return values for all MIB variables in the table, specify a
large number for this parameter.

130 IBM Tivoli Network Manager IP Edition: Perl API Guide

This parameter is relevant for MIB variables that return a table, for
example, ifIndex.

$instance
Specifies the start of the MIB subtree to retrieve. You must specify $instance
as an ASN1 string (for example, 5.3.15).

This parameter is optional.

$splitOutput
Specifies a value of true or false. If set to true (1) returns three extra keys
— OID, INDEX, and NAMEMIB. The default is false (0), that is, does not return
the three extra keys.

This parameter is optional.

Description

The SnmpGetBulk method performs an SNMP get-bulk operation on all MIB objects
specified in $oidBindList. The SnmpGetBulk method returns the three extra keys —
OID, INDEX, and NAMEMIB — only if the $splitOutput parameter is set to true (1).

Notes

The parameters $nonRepeaters and $maxRepetitions must be defined. No default
values are specified for these parameters.

Example Usage
@oids=(’sysDescr’,’sysContact’,’sysUpTime’,’ipInReceives’,
’ipOutRequests’,’ipOutDiscards’,’ipForwDatagrams’,’tcpCurrEstab’,
’ifDescr’);
($vap) = $snmp->SnmpGetBulk($nodeIP, "", \@oids, 8, 100);

Returns

Upon completion, the SnmpGetBulk method returns a reference to a result array.
Each element of the result array is a %varop hash.

See Also
v “RIV::SnmpAccess Constructor” on page 123

SnmpGetNext
The SnmpGetNext method performs an SNMP get-next operation on the specified
MIB variable.

Method Synopsis
SnmpGetNext($nodeIP, $addOn, $oid,
[$instance, $splitOutput])

Parameters

$nodeIP
Specifies a valid IP address.

$addOn
Specifies the suffix to the community string.

$oid Specifies the MIB variable for which you want to perform an SNMP
get-next operation.

Appendix A. RIV Modules Reference 131

$instance
Specifies the start of the MIB subtree to retrieve. You must specify $instance
as an ASN1 string (for example, 5.3.15).

This parameter is optional.

$splitOutput
Specifies a value of true or false. If set to true (1) returns three extra keys
— OID, INDEX, and NAMEMIB. The default is false (0), that is, does not return
the three extra keys.

This parameter is optional.

Description

The SnmpGetNext method performs iterative SNMP get-next operations on the
specified host ($nodeIP) for the MIB table starting at the specified MIB variable
($oid). The SnmpGetNext method returns the three extra keys — OID, INDEX, and
NAMEMIB — only if the $splitOutput parameter is set to true (1).

Example Usage
($vap) = $snmp->SnmpGetNext($nodeIP, "", "ifDescr");

Returns

Upon completion, the SnmpGetNext method returns a reference to a result array.
Each element of the result array is a %varop hash.

See Also
v “RIV::SnmpAccess Constructor” on page 123

SplitOidAndIndex
The SplitOidAndIndex method converts the full ASN.1 value into its index and the
base OID.

Method Synopsis
SplitOidAndIndex($fullASN1)

Parameters

$fullASN1
Specifies the complete ASN.1 (Abstract Syntax Notation One) value to be
split.

Description

The SplitOidAndIndex method splits the specified ASN.1 value ($fullASN1) into its
index and the base OID (object identifier).

Example Usage

The following call to SplitOidAndIndex passes an ASN.1 value of
1.3.6.1.2.1.2.2.1.2.0 to the $fullASN1 parameter:
($baseOid, $indexOid, $baseOidName) = $snmp->SplitOidAndIndex($fullASN1);

The previous call returns the following values:

132 IBM Tivoli Network Manager IP Edition: Perl API Guide

v $baseOID=1.3.6.1.2.1.2.2.1.2

v $indexOID=0

v $baseOidName=ifDescr

Returns

Upon completion, the SplitOidAndIndex method returns an array with three
elements:
v The base OID.
v The index.
v The name of the base OID.

See Also
v “RIV::SnmpAccess Constructor” on page 123

Appendix A. RIV Modules Reference 133

134 IBM Tivoli Network Manager IP Edition: Perl API Guide

Appendix B. NCP Modules Reference

Each NCP module provides constructors and methods used in the Perl scripts that
you implement to perform operations on NCIM topology databases and NCIM
domains.

To implement Perl scripts using the NCP modules, you must be familiar with the
constructors and methods that each module provides. These constructors and
methods are described in manual (reference) page format.

The following list identifies the NCP modules:
v NCP::DBI_FACTORY

v NCP::Domain

NCP::DBI_Factory module reference
The NCP::DBI_Factory module provides an interface to make it easier to use the
standard Perl DBI module to perform operations on NCIM topology databases.

The NCP::DBI_Factory module provides a method used to create a standard DBI
handle used in subsequent calls to some of the methods that perform operations
on NCIM topology databases.

Use of the methods that the NCP::DBI_Factory module provides assumes that you
understand how to use the standard Perl DBI module and that you are familiar
with NCIM topology databases.

See IBM Tivoli Network Manager IP Edition Topology Database Reference
(SC27-2766-00) for information on NCIM topology databases.

Each of the NCP::DBI_Factory module methods is described in manual (reference)
page format.

NCP::DBI_Factory module synopsis
The NCP::DBI_Factory module synopsis shows how to make calls to some of the
NCIM database operation methods that this module provides.

The comments provided in the synopsis serve as a quick reference as to the
purpose of the NCIM database operation methods. The reference (man) pages
provide the details.
Load the NCP::DBI_Factory module.
use NCP::DBI_Factory;

Get the database login details from DbLogins.NCOMS.cfg, or,
failing that, from DbLogins.cfg.

my %typicalParameters = (
domain => "NCOMS",
dbid => "NCIM",
);

Call the createDbHandle method to obtain the DBI handle. In this call,
pass the %typicalParameters hash parameter.
my $dbh = NCP::DBI_Factory::createDbHandle(%typicalParameters);

© Copyright IBM Corp. 2006, 2012 135

my %explicitParams = (
dbname => "ncim",
server => "mysql",
schema => "ncim",
host => "192.168.1.1",
username => "dbuser",
password => "dbpassword",
port => 3406 # optional

);

Call the createDbHandle method to obtain a second DBI handle. In this call,
pass the %explicitParameters hash parameter.
my $otherDbh = NCP::DBI_Factory::createDbHandle(%explicitParams);

Declare variables that the insert_row and insert_auto_inc_row methods use.
my $tableName = "entityNameCache";
my $name = "entity1";

Declare a hash that the insert_row and insert_auto_inc_row methods use.
Note: The string in $name will automatically be quoted.
my %row = (

entityName => $name,
domainMgrId => 1

);

Call the insert_row method to insert a row into a database table
called entityNameCache.
NCP::DBI_Factory::insert_row($dbh, $tableName, \%row)

or print "Insert failed ", $dbh->errstr "\n";

my $autoIncColumnName = "entityId";

Call the insert_auto_inc_row method to insert a row into a database table
called entityNameCache. This table has an auto incremented column called
entityId.
my $newId = NCP::DBI_Factory::insert_auto_inc_row(

$dbh, $tableName, \%row, $autoIncColumnName)
or print "Insert failed ", $dbh->errstr "\n";

Set up the variabloes to use in the calls to the
prepare_insert_auto_inc and execute_insert_auto_inc methods.
my @columnName = ["entityName","domainMgrId"];
my @values = ["entity2",2];
my $sth = NCP::DBI_Factory::prepare_insert_auto_inc(

$dbh, $tableName, $autoIncColumnName, @columnNames)
or print "Prepared failed ", $dbh->errstr, "\n";

my $newId2 = NCP::DBI_Factory::execute_insert_auto_inc(
$dbh, $sth, @values)
or print "Insert failed ", $dbh->errstr "\n";

$sth->finish();

Commit the changes to the NCIM topology database by calling
the Perl DBI module commit method. Otherwise, call the Perl DBI
rollback method to undo the most recent series of uncommitted
database changes.
if ($happy)
{

$dbh->commit();
}
else
{

$dbh->rollback();
}

Identify the current schema by calling the schema method.

136 IBM Tivoli Network Manager IP Edition: Perl API Guide

Call the tables method to return a sorted array of table
and view names for the current schema.
Call the describeTable method to return a sorted array
of upper case field names for the specified table
in the current schema.
my $schema = NCP::DBI_Factory::schema(%typicalParameters);
my @tableList = NCP::DBI_Factory::tables(dbh => $dbh,

schema => $schema,
%typicalParameters);

foreach my $table (@tableList)
{
my @fields = NCP::DBI_Factory::describeTable(

$table,
dbh => $dbh,
schema => $schema);

createDbHandle
The createDbHandle method creates a standard DBI handle, connected to the
requested NCIM topology database. This DBI handle is used in subsequent calls to
some of the other NCP::DBI_Factory module methods.

Method Synopsis
NCP::DBI_Factory::createDbHandle(%typicalParameters)

NCP::DBI_Factory::createDbHandle(%explicitParameters)

Parameters

%typicalParameters
Specifies a hash that contains the key/value pairs necessary for
createDbHandle to access information from one of the following files in
order to create a DBI handle:
v DbLogins.cfg — Specifies the standard database log-ins configuration

file.
v DbLogins.domain.cfg — Specifies a domain-specific database log-ins

configuration file where domain identifies a domain (for example,
DbLogins.NCOMS.cfg).

v Custom file — Specifies an optional custom database log-ins
configuration file. This file is expected to have the same format as
DbLogins.cfg and DbLogins.domain.cfg.

The following table identifies the key/value pairs in this hash:

Appendix B. NCP Modules Reference 137

Hash key Description

domain Specifies the name of the domain used to
identify whether a DbLogins.domain.cfg file
exists in the $NCHOME/etc/precision
directory.

The following example shows a possible
value for this key:

domain => "NCOMS"

In this example, the createDbHandle method
would look for a file called
DbLogins.NCOMS.cfg in the
$NCHOME/etc/precision directory.

If a DbLogins.domain.cfg file does not exist,
createDbHandle looks for the DbLogins.cfg
file.

This is a required key/value pair.

dbid Specifies the logical name for the NCIM
topology database to which you want to
connect. Each NCIM topology database has
a unique logical name specified in the
DbLogins.cfg, DbLogins.domain.cfg, or
custom database log-ins configuration file.

The following example shows a possible
value for this key:

dbid => "ncim"

In this example, the value ncim specifies the
logical name for this connection to the
NCIM topology database.

The createDbHandle method uses dbid to
locate the appropriate section of the
database log-ins configuration file.

This is a required key/value pair.

Note: The dbid key/value pair maps to the
m_DbId field in the database log-ins
configuration file.

dbfile Specifies the name of the custom database
log-ins configuration file. If you specify the
optional dbfile key/value pair, the
createDbHandle method would look for the
specified custom file in the
$NCHOME/etc/precision directory.

%explicitParameters
Specifies a hash that contains the key/value pairs necessary to create a DBI
handle. In this case, createDbHandle does not obtain the necessary values
from a file as is the case for the %typicalParameters hash parameter. Instead,
all of the necessary values are explicitly specified. (Typically, an application
would obtain these values from the command line.) The following table

138 IBM Tivoli Network Manager IP Edition: Perl API Guide

identifies the key/value pairs in this hash. All key/value pairs listed in the
table are required, except for port, which is optional.

Hash key Description

dbname Specifies the name of the NCIM topology
database to which you want to connect.

The following example shows a possible
value for this key:

dbname => "ncim"

In this example, the value ncim specifies that
you want to connect to the NCIM topology
database.

server Specifies a string that identifies the type of
database associated with the database name
specified in the dbname key.

The following list identifies the possible
values for this key:

v mysql — Specifies the MySQL database.

v oracle — Specifies the Oracle database.

v db2 — Specifies the DB2 database.

v informix — Specifies the Informix®

database.

The following example shows a database
type of MySQL:

server => "mysql"

schema Specifies the name of the schema to access
in the database specified in the dbname key.

The following example shows a possible
value for this key:

schema => "ncim"

host Specifies the address of the host computer
on which the specified NCIM topology
database resides.

The following example shows a possible
value for this key:

host => "192.168.1.1"

username Specifies the name of the user who has
access to the specified NCIM topology
database.

The following example shows a possible
value for this key:

username => "dbuser"

Appendix B. NCP Modules Reference 139

Hash key Description

password Specifies the password of the user who has
access to the specified NCIM topology
database.

The following example shows a possible
value for this key:

password => "dbpassword"

port Specifies an optional key that identifies the
port associated with the address specified in
host.

The following example shows a possible
value for this key:

port => "3406"

Description

The createDbHandle method creates a standard DBI (Database Interface) handle to
be used in subsequent calls to some of the other NCP::DBI_Factory methods. This
DBI handle contains the information needed to connect to the requested NCIM
topology database.

The createDbHandle method accepts the following hash parameters:
v %typicalParameters — This hash provides the domain and dbid key/value pairs.

Optionally, this hash can provide a dbfile key/value pair. Given this
information, the createDbHandle method:
– Reads and parses one of these files that resides in the $NCHOME/etc/precision

directory: DbLogins.cfg (the default), DbLogins.domain.cfg, or an optional
custom database login-ins configuration file.

– Uses the dbid key/value pair to locate the database entry of interest in the
specified database log-ins configuration file.

– Connects to the specified NCIM topology database.
– Sets the context to the schema associated with the specified NCIM topology

database.
v %explicitParameters — This hash provides all of the required information from

the command line. Given this information, the createDbHandle method:
– Connects to the specified NCIM topology database.
– Sets the context to the schema associated with the specified NCIM topology

database.

When reading from a database log-ins configuration file, createDbHandle can
override any values from the file if you explicitly pass them in from the command
line. The following table provides the available override options and their
mappings to the fields in the database log-ins configuration file:

Override option Description

dbfile Specifies an optional override for the
DbLogins.cfgdatabase log-ins configuration
file. This file is expected to have the same
format as DbLogins.cfg and
DbLogins.domain.cfg.

140 IBM Tivoli Network Manager IP Edition: Perl API Guide

Override option Description

dbname Specifies the name of the database. If
specified on the command line, this option
overrides the value specified for the
m_DbName field in the database log-ins
configuration file.

server Specifies a string that identifies the type of
database associated with the database name
specified in the dbname option.

The following list identifies the possible
values for the server option:

v mysql — Specifies the MySQL database.

v oracle — Specifies the Oracle database.

v db2 — Specifies the DB2 database.

v informix — Specifies the Informix
database.

This option overrides the value specified for
the m_Server field in the database log-ins
configuration file.

schema Specifies the name of the schema to access
in the specified database. This option
overrides the value specified for the
m_Schema field in the database log-ins
configuration file.

host Specifies the address of the host computer
on which the specified NCIM topology
database resides. This option overrides the
value specified for the m_Hostname field in
the database log-ins configuration file.

username Specifies the name of the user who has
access to the specified NCIM topology
database. This option overrides the value
specified for the m_Username field in the
database log-ins configuration file.

password Specifies the password of the user who has
access to the specified NCIM topology
database. This option overrides the value
specified for the m_Password field in the
database log-ins configuration file.

port Specifies the port associated with the
address specified in host. This option
overrides the value specified for the
m_PortNum field in the database log-ins
configuration file.

Notes

To ensure that the createDbHandle method can print appropriate messages to a log
file, you must have previously specified a log handle (that is, a reference to a file
object) by calling the setLogHandle method. Otherwise, the method sends these
messages to STDOUT.

Appendix B. NCP Modules Reference 141

Example Usage

The following code example illustrates a typical call to the createDbHandle method
using the %typicalParameters hash parameter:
Set up the hash list to contain the domain and
database ID.

my %typicalParameters = (
domain => "NCOMS",
dbid => "NCIM"
);

Call the createDbHandle method passing to it the previously
set up hash list. In this case, createDbHandle knows that the
information it needs to create the DBI handle resides in a file.
The createDbHandle method returns the DBI to the $dbh variable.
#

my $dbh = NCP::DBI_Factory::createDbHandle(%typicalParameters);

The following code example illustrates a typical call to the createDbHandle method
using the explicitParams parameter:
Set up the hash list to contain the information necessary to create
the DBI handle without reading a database log-ins configuration file.

my %explicitParams = (
dbname => "ncim",
server => "mysql",
schema => "ncim",
host => "9.180.209.24",
username => "batman",
password => "robin",
port => 3406 # This is an optional element.

);

Call the createDbHandle method passing to it the previously set up
hash list that contains the information necessary to create the
DBI handle. The createDbHandle method returns the DBI handle to
the $otherDbh variable.
my $otherDbh = NCP::DBI_Factory::createDbHandle(%explicitParams);

Returns

Upon completion, the createDbHandle method returns a standard DBI handle
associated with the requested NCIM topology database.

See Also
v “schema” on page 153

describeTable
The describeTable method returns a sorted array of uppercase field names for the
specified table or view.

Method Synopsis
NCP::DBI_Factory::describeTable($tableName, %dbhschema)

NCP::DBI_Factory::describeTable($tableName, %typicalParameters)

142 IBM Tivoli Network Manager IP Edition: Perl API Guide

Parameters

$tableName
Specifies the name of the database table that is of interest. Because the
different databases that the DBI_Factory module supports use different
cases for table names, supply the table name in mixed case. For example, if
the table name is entitynamecache, then the mixed case equivalent is
entityNameCache.

In either case, the describeTable method internally converts the specified
database table name to upper or lower case as required.

%dbhschema
Specifies a hash that contains the following keys:
v dbh — Specifies an existing DBI handle returned in a previous call to the

createDbHandle method. This handle supplies the context for connecting
to the specified NCIM topology database.

v schema — Specifies the schema that contains the database table name
specified in the $tableName parameter. Typically, this schema name is
obtained in a call to the schema method.

%typicalParameters
Specifies the same hash parameter accepted by the createDbHandle
method.

Description

The describeTable method returns a sorted array of uppercase field names for the
database table or view specified in the $tableName parameter. For full portability,
pass this table name in mixed case to the tableName parameter. The describeTable
method:
v Converts the table name to upper case for Oracle and DB2 databases, since these

databases require upper case table names. For example, the table name
entityNameCache would be converted to ENTITYNAMECACHE.

v Accepts the mixed case table name for a MySql database, since this database
requires mixed case table names. For example, the table name entityNameCache
would be accepted as entityNameCache.

v Accepts the mixed case table name for an Informix database. This type of
database accepts either upper or mixed case.

If you specify the %typicalParameters hash instead of the %dbhschema hash,
describeTable calls createDbHandle to create a new DBI handle. The schema
associated with this newly created handle is identified by the dbid key/value pair
and this schema is expected to contain the table specified in the $tableName
parameter.

Notes

The NCP::DBI_Factory module supports DB2, Oracle, Informix, and MySql
databases. In all of these databases, tables and field names are case insensitive with
regard to SQL statements. However, note the following about field names in table
rows returned by these databases:
v DB2 and Oracle — Return field names in uppercase.
v Informix — Returns field names in lowercase.
v MySql — Returns field names in mixed case.

Appendix B. NCP Modules Reference 143

Example Usage

The following code example illustrates a typical call to the describeTable method
using the %dbhschema hash parameter. The code example also shows a call to the
tables method:
List the tables in schema $schema without creating a new DBI handle.
my @tableList = NCP::DBI_Factory::tables(dbh => $dbh,

schema => $schema);
foreach my $table (@tableList)
{

my @fields = NCP::DBI_Factory::describeTable(
$table,
dbh => $dbh,
schema => $schema);

}

Returns

Upon completion, the describeTable method returns a sorted array of uppercase
field names for the specified database table or view.

See Also
v “createDbHandle” on page 137
v “schema” on page 153
v “tables” on page 156

execute_insert_auto_inc
The execute_insert_auto_inc method executes an auto-incremented column
statement handle prepared by the prepare_insert_auto_inc method.

Method Synopsis
NCP::DBI_Factory::execute_insert_auto_inc($dbHandle,$statementHandle,
$values)

Parameters

$dbHandle
Specifies the DBI handle returned in a previous call to the createDbHandle
method. This handle supplies the context for connecting to the specified
NCIM topology database.

$statementHandel
Specifies the statement handle returned in a previous call to the
prepare_insert_auto_inc method.

$values
Specifies the values to be executed.

Description

The execute_insert_auto_inc method executes an auto-incremented column
statement handle prepared by the prepare_insert_auto_inc method.

Notes

To ensure that the execute_insert_auto_inc method can print appropriate
messages to a log file, you must have previously specified a log handle (that is, a

144 IBM Tivoli Network Manager IP Edition: Perl API Guide

reference to a file object) by calling the setLogHandle method. Otherwise, the
method sends these messages to STDOUT.

Example Usage

The following code example illustrates a typical call to the
execute_insert_auto_inc method:

ToBeSupplied

Returns

Upon completion, the execute_insert_auto_inc method returns the new
auto-incremented value.

See Also
v “createDbHandle” on page 137
v “prepare_insert_auto_inc” on page 152

extractCmdLineOptions
The extractCmdLineOptions method allows database login options specified on the
command line to be provided in a common format.

Method Synopsis
NCP::DBI_Factory::extractCmdLineOptions([$prefix])

Parameters

$prefix
An optional parameter that specifies a prefix used to allow other similar
database login options to be supplied for multiple database connections.
Examples of such prefixes include ncim_, ncmonitor_, and ncpoller_.

Description

The extractCmdLineOptions method allows database login options specified on the
command line to be provided in a common format. This method accepts the same
database login options as the createDbHandle method:
v dbfile

v server

v dbname

v schema

v host

v username

v password

v port

The extractCmdLineOptions method can also take an optional $prefix parameter
that specifies similar database login options other than the previously listed
options. This optional parameter allows Perl scripts to handle multiple sets of
database login options by calling the extractCmdLineOptions method multiple
times.

Appendix B. NCP Modules Reference 145

Notes

The extractCmdLineOptions method removes the database login options that it
processes and returns in the hash from the @ARGV array. However, any options that
do not get processed and returned in the hash remain in the @ARGV array.

Use the extractCmdLineOptions method to process database login options from the
command line. Use the extractHashRefOptions method to process database login
options from a hash reference.

Example Usage

You can call the extractCmdLineOptions method with or without the $prefix
parameter.

Calling extractCmdLineOption without the $prefix parameter

The following code example illustrates a call to the extractCmdLineOptions method
without the use of the $prefix optional parameter. The example declares a variable
called $optionsHashRef to store the reference to the hash returned by
extractCmdLineOptions:
my $optionsHashRef = NCP::DBI_Factory::extractCmdLineOptions();

Assume that the previous code example is contained in a Perl script called
dboptions.pl. Consider this script executed with the password , host, and whatever
database login options:
dboptions.pl -password tom -host dick -whatever harry

The extractCmdLineOptions returns a reference to a hash in $optionsHashRef as
follows:
$optionsHashRef = { password => "tom", host => "dick" }

The database login option — (’-whatever’, ’harry’) — remains in the @ARGV
array because the extractCmdLineOptions method could not process it without the
$prefix optional parameter.

Calling extractCmdLineOption with the $prefix parameter

The following code example illustrates multiple calls to the extractCmdLineOptions
method with the use of the $prefix optional parameter:
my $generic =
NCP::DBI_Factory::extractCmdLineOptions();
my $ncimSpecific =
NCP::DBI_Factory::extractCmdLineOptions("ncim_")|| $generic;
my $ncmonitorSpecific =
NCP::DBI_Factory::extractCmdLineOptions("ncmonitor_") || $generic;
my $ncpollerSpecific =
NCP::DBI_Factory::extractCmdLineOptions("ncpoller_") || $generic;

Assume that the previous code example is contained in a Perl script called
dboptionsuseprefix.pl. Consider this script executed with the password and
ncpoller_password database login options:
dboptionsuseprefix.pl -password "ncim" -ncpoller_password "ncpoller"

The extractCmdLineOptions returns references to hashes in $ncimSpecific,
$ncmonitorSpecific, and $ncpollerSpecific as follows:

146 IBM Tivoli Network Manager IP Edition: Perl API Guide

$ncimSpecific = { password => "ncim" };
$ncmonitorSpecific = { password => "ncim" };
$ncpollerSpecific = { password => "ncpoller" };

The following list further explains how these calls to extractCmdLineOptions work:
v The first call to extractCmdLineOptions (without the optional $prefix parameter)

processes the -password "ncim database login option and returns a reference to a
hash that contains { password => "ncim" }.

v The second call to extractCmdLineOptions sets up a logical OR operation. If a
database login option beginning with the prefix ncim_ is specified, then process
it and return the appropriate value in the hash reference. Otherwise, return {
password => "ncim" } to the hash reference. In this case, the right side of the
logical OR is true.

v The third call to extractCmdLineOptions sets up a logical OR operation. If a
database login option beginning with the prefix ncmonitor_ is specified, then
process it and return the appropriate value in the hash reference. Otherwise
return { password => "ncim" } to the hash reference. In this case, the right side
of the logical OR is true.

v The fourth call to extractCmdLineOptions sets up a logical OR operation. If a
database login option beginning with the prefix ncpoller_ is specified, then
process it and return the appropriate value in the hash reference. Otherwise
return { password => "ncim" } to the hash reference. In this case, the left side of
the logical OR is true and so password => "ncpoller is returned.

Returns

Upon completion, the extractCmdLineOptions method returns a reference to a hash
that contains the extracted database login options and values in key/value format.
If no database login options were specified, the extractCmdLineOptions method
returns undef.

See Also
v “createDbHandle” on page 137
v “extractHashRefOptions”

extractHashRefOptions
The extractHashRefOptions method extracts the database login options from the
specified hash reference.

Method Synopsis
NCP::DBI_Factory::extractHashRefOptions($originalHashRef [,$prefix])

Parameters

$originalHashRef
Specifies a reference to the original hash that contains the database login
options.

$prefix
An optional parameter that specifies a prefix used to allow other similar
database login options to be supplied for multiple database connections.
Examples of such prefixes include ncim_, ncmonitor_, and ncpoller_.

Appendix B. NCP Modules Reference 147

Description

The extractHashRefOptions method extracts the database login options from the
hash reference specified in the $originalHashRef parameter. This method accepts the
same database login options as the createDbHandle method:
v dbfile

v server

v dbname

v schema

v host

v username

v password

v port

The extractHashRefOptions method can also take an optional $prefix parameter
that specifies similar database login options other than the previously listed
options. This optional parameter allows Perl scripts to handle multiple sets of
database login options by calling the extractHashRefOptions method multiple
times.

Notes

The extractHashRefOptions method does not remove the key/value pairs from the
hash reference specified in the $originalHashRef parameter.

Use the extractHashRefOptions method to process database login options from a
hash reference. Use the extractCmdLineOptions method to process database login
options from the command line or DbLogins.cfg file.

Example Usage

The following code example sets up a hash reference and then makes two calls to
the extractHashRefOptions method:
my %original =
{ password => "topsecret", ncpoller_password => "classified, foo => "bar" };

my $generic = NCP::DBI_Factory::extractHashRefOptions(\%original);
my $ncpoller = NCP::DBI_Factory::extractHashRefOptions(\%original, "ncpoller_");

The following further explains how these calls to extractHashRefOptions work:
v The first call to extractHashRefOptions extracts the -password => "topsecret"

database login option and returns it to $generic. This call to
extractHashRefOptions cannot extract the other two options because this call did
not specify ncpoller_ or foo_ in the optional $prefix parameter. The -password
=> "topsecret" option remains in the %original hash reference.

v The second call to extractHashRefOptions extracts the -password =>
"classified" database login option and returns it to $ncpoller. This call to
extractHashRefOptions extracts -password => "classified" because of the
ncpoller_ prefix passed to the $prefix parameter. The -password =>
"classified" option remains in the %original hash reference.

v The foo => "bar" option is not extracted and remains in the %original hash
reference.

148 IBM Tivoli Network Manager IP Edition: Perl API Guide

Returns

Upon completion, the extractHashRefOptions method returns a reference to a hash
that contains the extracted database login options and values in key/value format.
If no database login options were specified, the extractHashRefOptions method
returns undef.

See Also
v “createDbHandle” on page 137
v “extractCmdLineOptions” on page 145

insert_auto_inc_row
The insert_auto_inc_row method inserts a row into the specified table that has an
auto-increment column.

Method Synopsis
NCP::DBI_Factory::insert_auto_inc_row($dbHandle,$tableName,
$tableRow, $autoIncColumnName)

Parameters

$dbHandle
Specifies the DBI handle returned in a previous call to the createDbHandle
method. This handle supplies the context for connecting to the specified
NCIM topology database.

$tableName
Specifies the name of the table into which the insert_auto_inc_row
method inserts the row specified in the $tableRow parameter.

$tableRow
Specifies a hash of scalars keyed on the column name.

$autoIncColumnName
Specifies the name of the auto-increment column in the specified table.

Description

The insert_auto_inc_row method inserts the row specified in the $tableRow
parameter into the table specified in the $tableName parameter. The table is
expected to contain the auto-increment column name specified in the
$autoIncColumnName parameter.

Note: You can also call the DBI rollback interface to undo the most recent insert
row change.

Notes

To ensure that the insert_auto_inc_row method can print appropriate messages to
a log file, you must have previously specified a log handle (that is, a reference to a
file object) by calling the setLogHandle method. Otherwise, the method sends these
messages to STDOUT.

Use the insert_auto_inc_row method to insert rows in tables that have an auto-
increment column. Use the insert_row method to insert rows in tables that have
do not have an auto- increment column.

Appendix B. NCP Modules Reference 149

Example Usage

The following code example illustrates a typical call to the insert_auto_inc_row
method:
my $tableName = "entityNameCache";

my $name = "fred";

Note: the string in $name will automatically be quoted
my %row = (

entityName => $name,
domainMgrId => 1

);

my $autoIncColumnName = "entityId";

my $newId = NCP::DBI_Factory::insert_auto_inc_row(
$dbh, $tableName, \%row, $autoIncColumnName)
or print "Insert failed ", $dbh->errstr "\n";

Changes only take effect when this is called
if ($happy)
{

$dbh->commit();
}
else
{

$dbh->rollback();
}

Returns

Upon completion, the insert_auto_inc_row method returns the new
auto-increment value, provided that the row could be uniquely identified by the
fields that the insert_auto_inc_row method just inserted into the specified table.

See Also
v “createDbHandle” on page 137
v “insert_row”

insert_row
The insert_row method inserts a row into the specified table.

Method Synopsis
NCP::DBI_Factory::insert_row($dbHandle,$tableName, $tableRow)

Parameters

$dbHandle
Specifies the DBI handle returned in a previous call to the createDbHandle
method. This handle supplies the context for connecting to the specified
NCIM topology database.

$tableName
Specifies the name of the table into which the insert_row method inserts
the row specified in the $tableRow parameter.

$tableRow
Specifies a hash of scalars keyed on the column name.

150 IBM Tivoli Network Manager IP Edition: Perl API Guide

Description

The insert_row method inserts the row specified in the $tableRow parameter into
the table specified in the $tableName parameter. The insert_row method
automatically interpolates any strings in $tableRow into double-quoted strings.

Note: You can also call the DBI rollback interface to undo the most recent insert
row change.

Notes

To ensure that the insert_row method can print appropriate messages to a log file,
you must have previously specified a log handle (that is, a reference to a file
object) by calling the setLogHandle method. Otherwise, the method sends these
messages to STDOUT.

Use the insert_row method to insert rows in tables that have do not have an auto-
increment column. Use the insert_auto_inc_row method to insert rows in tables
that have an auto- increment column.

Example Usage

The following code example illustrates a typical call to the insert_row method:
my $tableName = "entityNameCache";

my $name = "fred";

Note: the string in $name will automatically be quoted
my %row = (

entityName => $name,
domainMgrId => 1

);

NCP::DBI_Factory::insert_row($dbh, $tableName, \%row)
or print "Insert failed ", $dbh->errstr "\n";

Changes only take effect when commit is called
if ($happy)
{

$dbh->commit();
}
else
{

$dbh->rollback();
}

Returns

Upon completion, the insert_row method returns whatever the standard DBI
statement handle execute method returns.

See Also
v “createDbHandle” on page 137
v “insert_auto_inc_row” on page 149

Appendix B. NCP Modules Reference 151

prepare_insert_auto_inc
The prepare_insert_auto_inc method prepares the SQL statement once so that it
can be used multiple times when inserting many rows into an auto-increment
column of the specified database table.

Method Synopsis
NCP::DBI_Factory::prepare_insert_auto_inc($dbHandle,$tableName,
$autoIncColumnName, $columnNames)

Parameters

$dbHandle
Specifies the DBI handle returned in a previous call to the createDbHandle
method. This handle supplies the context for connecting to the specified
NCIM topology database.

$tableName
Specifies the name of the table into which the prepare_insert_auto_inc
method prepares the SQL statement to be inserted into multiple rows in
the specified columns.

$autoIncColumnName
Specifies the name of the auto-increment column in the specified table.

$columnNames
Specifies a hash of column names.

Description

The prepare_insert_auto_inc method prepares the SQL statement once so that it
can be used multiple times when inserting many rows into an auto-increment
column of the specified database table. Use this method when inserting many rows
into an auto-incremented column.

The returned SQL statement handle should be used with the
execute_insert_auto_inc method.

Notes

To ensure that the prepare_insert_auto_inc method can print appropriate
messages to a log file, you must have previously specified a log handle (that is, a
reference to a file object) by calling the setLogHandle method. Otherwise, the
method sends these messages to STDOUT.

Example Usage

The following code example illustrates a typical call to the
prepare_insert_auto_inc method:

ToBeSupplied

Returns

Upon completion, the prepare_insert_auto_inc method returns the prepared SQL
statement handle.

152 IBM Tivoli Network Manager IP Edition: Perl API Guide

See Also
v “createDbHandle” on page 137
v “insert_row” on page 150

schema
The schema method returns the schema name associated with the specified
database.

Method Synopsis
NCP::DBI_Factory::schema(%typicalParameters)

NCP::DBI_Factory::schema(%explicitParameters)

Parameters

$typicalParameters
Specifies the same hash parameter accepted by the createDbHandle
method. If you supply this hash parameter, schema obtains the value from
the database log-ins configuration file.

%explicitParameters
Specifies the same hash parameter accepted by the createDbHandle
method. If you supply this hash parameter, schema obtains the value from
the command line.

Description

The schema method returns the name of the schema being used as follows:
v If the %typicalParameters hash was specified — The schema method obtains the

name of the schema being used from one of these files: DbLogins.cfg,
DbLogins.DOMAIN.cfg, or an optional custom database log-ins configuration
file. If schema finds a domain-specific file, it uses that file to obtain the name of
the schema. If the schema variable was passed to the createDbHandle method,
then the schema method uses this variable to obtain the name of the schema. The
schema variable overrides the schema information contained in any of the
configuration files.

v If the %explicitParameters hash was specified — The schema method obtains the
name of the schema from the command line. (The schema name is the value
associated with the schema key in the %explicitParameters hash.)

Notes

To ensure that the schema method can print appropriate messages to a log file, you
must have previously specified a log handle (that is, a reference to a file object) by
calling the setLogHandle method. Otherwise, the method sends these messages to
STDOUT.

Example Usage

The following code fragment illustrates a typical call to the schema method using
the %typicalParams hash parameter:
Set up the hash list to contain the domain and database ID.
my %typicalParameters = (

domain => "NCOMS",
dbid => "NCIM"
);

Appendix B. NCP Modules Reference 153

Call the schema method passing to it the previously set up hash list.
In this case, the schema method knows that the name of the schema
resides in a database log-ins configuration file. The schema method
returns the name of the schema being used to the $schema variable.
#

my $schema = NCP::DBI_Factory::schema(%typicalParameters);

Consider the following entry in a DbLogins.cfg file. The previous call to the schema
method would return a schema name of ncim (m_schema), which is associated with
the database whose logical name is identified by the string NCIM (m_DbId).
insert into config.dbserver
(

m_DbId,
m_Server,
m_DbName,
m_Schema,
m_Hostname,
m_Username,
m_Password,
m_PortNum,
m_EncryptedPwd

)
values
(

"NCIM", -- Logical name for this connection (don’t change it)
"MySQL",
"ncim",
"ncim",
"localhost",
"ncim",
"ncim",
3306,
0

);

Returns

Upon completion, the schema method returns the name of the schema associated
with the specified NCIM topology database.

See Also
v “createDbHandle” on page 137

setLogHandle
The setLogHandle method passes in the specified log handle associated with an
opened file to which the NCP::DBI_Factory module methods can write messages.

Method Synopsis
NCP::DBI_Factory::setLogHandle($filehandle)

Parameters

$filehandle
Specifies a reference to a file handle (for example, IO::File) that points to
an opened file to which messages can be written.

154 IBM Tivoli Network Manager IP Edition: Perl API Guide

Description

The setLogHandle method passes in the log handle specified in the $filehandle
parameter to an internal utility method called by the NCP::DBI_Factory module
methods. This handle is associated with an opened file to which this internal
utility method writes messages. In effect, this opened file serves as a log file that
can contain debug, critical, informational, and warning type messages associated
with the execution of the NCP::DBI_Factory module methods.

If you do not call the setLogHandle method, the internal utility method writes
these messages to STDOUT.

To control the level of message reporting, call the setLogLevel method and specify
the desired log level.

Example Usage

The following code example shows a call to the setLogHandle method so that
messages get logged to an open file (whose associated file handle is specified in
the $logFile local variable) rather than to STDOUT. The code example also shows a
call to the setLogLevel method that specifies the logging of messages at the warn
and critical levels.
.
.
.
my $logName = "$logdir/checkPing.$domainName.log";

my $logFile = new IO::File;
$logFile->open(">$logName") or die "Could not open log file $logName\n";
NCP::DBI_Factory::setLogHandle($logFile);

.

.

.

NCP::DBI_Factory::setLogLevel("warn");

Returns

Upon completion, the setLogHandle method returns no data.

See Also
v “setLogLevel”

setLogLevel
The setLogLevel method sets the log level for error and message reporting.

Method Synopsis
NCP::DBI_Factory::setLogLevel($loglevel)

Parameters

$loglevel
Specifies the log level to set. The following are the valid options described
in ascending order:
v debug — Specifies a log level in which all messages are logged.
v info — Specifies a log level in which informational, warning, and critical

messages are logged.

Appendix B. NCP Modules Reference 155

v warn — Specifies a log level in which warning and critical messages are
logged.

v critical — Specifies a log level in which only critical messages are
logged.

Description

The setLogLevel method sets the log level to the option specified in the $loglevel
parameter. The default is debug level. If set to a higher level, only messages with
an equal or higher level will be logged. For example, at level warn, messages of
level info and level debug will not be logged.

By default, the NCP::DBI_Factory module methods log messages to STDOUT. If
you specify a log handle to the setLogHandle method, the NCP::DBI_Factory
module methods log messages to the opened file associated with this log handle.

The setLogLevel method logs an appropriate message (either to STDOUT or to an
opened file) if you specify an invalid log level.

Example Usage

The following code example illustrates a call to the setLogLevel method that
specifies the logging of messages at the warn and critical levels. The code
example also shows a call to the setLogHandle method so that these messages get
logged to an open file (stored in the $logFile local variable) rather than to STDOUT:
.
.
.
my $logName = "$logdir/checkPing.$domainName.log";

my $logFile = new IO::File;
$logFile->open(">$logName") or die "Could not open log file $logName\n";
NCP::DBI_Factory::setLogHandle($logFile);

.

.

.
NCP::DBI_Factory::setLogLevel("warn");

Returns

Upon completion, the setLogLevel method returns no data.

See Also
v “setLogHandle” on page 154

tables
The tables method returns a sorted array of table and view names for the current
schema.

Method Synopsis
NCP::DBI_Factory::tables(%dbhschema)

NCP::DBI_Factory::tables(%typicalParameters)

156 IBM Tivoli Network Manager IP Edition: Perl API Guide

Parameters

%dbhschema
Specifies a hash that contains the following keys:
v dbh — Specifies an existing DBI handle returned in a previous call to the

createDbHandle method.
v schema — Specifies the schema that contains the tables of interest.

Typically, this schema name is obtained in a call to the schema method.

%typicalParameters
Specifies the same hash parameter accepted by the createDbHandle
method.

Description

The tables method returns a sorted array of table and view names for the current
schema.

If you specify the %dbhschema hash, the tables method:
v Uses the dbh key/value pair to identify the existing DBI handle returned in a

previous call to the createDbHandle method. This DBI handle provides the
context for connecting to the specified NCIM topology database.

v Uses the current schema specified in the schema key/value pair to obtain the
tables of interest.

v Returns a sorted array of the table and view names for all tables associated with
the current schema.

If you specify the %typicalParameters hash, the tables method:
v Creates a new DBI handle. This DBI handle provides the context for connecting

to the specified NCIM topology database.
v Uses the dbid key/value pair to identify the current schema. For example, if the

dbid key/value pair is dbid => "NCIM", then the current schema might be called
ncim.

v Uses the current schema identified in the dbid key/value pair to obtain the
tables of interest.

v Returns a sorted array of the table and view names for all tables associated with
the current schema.

Example Usage

The following code example illustrates a typical call to the tables method using
the %dbhschema hash parameter. The code fragment also shows a call to the
describeTable method:
List the tables in schema $schema without creating a new DBI handle.

my @tableList = NCP::DBI_Factory::tables(dbh => $dbh,
schema => $schema);

foreach my $table (@tableList)
{

my @fields = NCP::DBI_Factory::describeTable(
$table,
dbh => $dbh,
schema => $schema);

}

Appendix B. NCP Modules Reference 157

Returns

Upon completion, the tables method returns a sorted array of table and view
names for the current schema.

See Also
v “createDbHandle” on page 137
v “describeTable” on page 142
v “schema” on page 153

timeStamp
The timeStamp method returns a timestamp in a format suitable for addition to the
NCIM topology database.

Method Synopsis
NCP::DBI_Factory::timeStamp([$unixtimestamp])

Parameters

$unixtimestamp
Specifies a UNIX timestamp. This is an optional parameter. If you do not
specify this parameter, the timeStamp method uses the current timestamp
on the local host.

Description

The timeStamp method converts the current timestamp on the local host (or the
UNIX timestamp if specified in the unixtimestamp parameter) to the following
format that is suitable for addition to the requested NCIM topology database:
YYYY-MM-DD HH:MM:SS

where:
v YYYY — Specifies the year.
v MM — Specifies the month.
v DD — Specifies the day.
v HH — Specifies the hour.
v MM — Specifies the minutes.
v SS — Specifies the seconds.

The timeStamp method adds leading zeroes to any of the previous fields whose
values are less than 10.

Example Usage

The following code example illustrates a call to the timeStamp method, specifying
the current timestamp on the local host:
.
.
.
my $currenttime
$currenttime = timestamp();
.
.
.

158 IBM Tivoli Network Manager IP Edition: Perl API Guide

If the current timestamp on the local host is June 6, 2010 5:39:45 EST, the
timeStamp method converts it to the following format that is suitable for addition
to the requested NCIM topology database:
2010-06-04-18:39:45

The following code example illustrates a call to the timeStamp method, specifying a
UNIX timestamp:
my $currenttime
$currenttime = timestamp(1275694785);

The timeStamp method converts this UNIX timestamp to the following format that
is suitable for addition to the requested database:
2010-06-04-18:39:45

Returns

Upon completion, the currentTimeStamp method returns the current timestamp on
the local host (or the UNIX timestamp) in the following format:
YYYY-MM-DD HH:MM:SS

toUpper
The toUpper method returns a copy of a hash (a single row retrieved from an
NCIM database table) with all field names converted to uppercase.

Method Synopsis
NCP::DBI_Factory::toUpper(%rowHashRef)

Parameters

%rowHashRef
Specifies a hash that is a single row retrieved from an NCIM database
table. The field names in this row can be specified in mixed case,
lowercase, or uppercase.

Description

The toUpper method takes the hash (a single row retrieved from an NCIM
database table) specified in the %rowHashRef parameter and returns a copy of this
hash with all field names converted to uppercase.

The reason for providing this method is to ensure consistency across databases.
Different database implementations return field names in different formats (mixed
case, uppercase, or lowercase). By always converting field names to uppercase,
client scripts can be made database-server-independent. To do this, pass all
returned rows through this method and perform any subsequent lookup
operations with uppercase field names.

The toUpper method drops any undefined fields in the row to promote consistent
behavior across the supported databases.

Appendix B. NCP Modules Reference 159

Notes

The NCP::DBI_Factory module supports DB2, Oracle, Informix, and MySql
databases. In all of these databases, tables and field names are case insensitive with
regard to SQL statements. However, note the following about field names in table
rows returned by these databases:
v DB2 and Oracle — Return field names in uppercase.
v Informix — Returns field names in lowercase.
v MySql — Returns field names in mixed case.

Example Usage

The following code example makes calls to methods defined in the Perl DBI
module to prepare, execute, and fetch a select statement:
my $statement = $dbh->prepare($selectQuery);
$statement->execute();
my $results = $statement->fetchall_arrayref({});

The following list provides a line-by-line explanation of the previous code
example:
v The first line calls the prepare method to prepare the select statement specified

in $selectQuery for later execution by the database engine. The prepare method
returns a reference to a statement handle object in $statement.

v The second line uses the statement handle object returned in $statement to get
attributes of the select statement and then invokes the execute method to
process the prepared statement.

v The third line calls the fetchall_arrayref method to fetch all the data returned
from the previously prepared and executed select statement. The
fetchall_arrayref method returns to $results a reference to an array that
contains one reference per row.

The following code example calls the toUpper method to convert all field names to
upper case:
foreach my $row (@$results)

{
$row = NCP::DBI_Factory::toUpper($row);

}

The following list provides a line-by-line explanation of the previous code
example:
v The first line sets up a foreach loop that iterates through the @$results array.
v For each field name in the table row, call the toUpper method to covert the name

to uppercase.

The following code example shows that fields can be safely extracted using
uppercase field names:
foreach my $row (@$results)

{
my $entityId = $row->{ENTITYID};

}

Returns

Upon completion, the toUpper method returns a copy of a hash (a single row
retrieved from a database table) with all field names converted to upper case.

160 IBM Tivoli Network Manager IP Edition: Perl API Guide

NCP::Domain Reference
The NCP::Domain module provides an interface to perform operations on the
Network Connectivity and Inventory Model (NCIM) topology database that resides
in a single Network Manager domain.

The NCP::Domain module provides a constructor that creates a new NCP::Domain
object that you use to call methods that perform these tasks:
v Create an entry in the domainMgr table for this domain if one does not already

exist
v Create a new domain that is a copy of an existing domain
v Remove all references to the specified domain from the domainMgr table
v Retrieve the domainMgrId from the domainMgr table in the NCIM topology

database that resides in the specified domain
v Return the domain name for the current domain
v Pass in a log handle associated with an opened file used for logging messages
v Set the log level for error and message reporting

Use of the methods that the NCP::Domain module provides assumes that you
understand concepts related to the NCIM topology database.

See IBM Tivoli Network Manager IP Edition Topology Database Reference
(SC27-2766-00) for information on NCIM topology databases.

The constructor and methods are described in reference (man) page format.

NCP::Domain module synopsis
The NCP::Domain module synopsis shows how to make calls to the constructor and
domain operation methods that this module provides.

The comments provided in the synopsis serve as a quick reference as to the
purpose of the constructor and domain operation methods. The reference (man)
pages for the constructor and each method provide the details.
Declare the module with the use directive.

use NCP::Domain;

Call the NCP::Domain constructor. This call to the NCP::Domain
constructor specifies the name of the Network Manager domain with
the string "NEWDOMAIN". The NCP::Domain constructor returns
to $domain a new NCP::Domain object.
#
This call to the NCP::Domain constructor does not specify any
database connection options.

my $domain = new NCP::Domain("NEWDOMAIN");

Use the NCP::Domain object ($domain->) to directly invoke the
create method to create an entry in the domainMgr table for the
NEWDOMAIN domain.

$domain->create();

Call the NCP::Domain constructor a second time. This call to
the NCP::Domain constructor specifies the name of the Network
Manager domain with a hash keyword/value pair of domain => "COPY".
The NCP::Domain constructor returns to $copy a new NCP::Domain object.

Appendix B. NCP Modules Reference 161

#
This call to the NCP::Domain constructor does not specify any
database connection options.
my $copy = new NCP::Domain(domain => "COPY");

Use the NCP::Domain object ($copy->) to directly invoke the clone
method to create a new domain that is a copy of the existing
domain (NEWDOMAIN).

$copy->clone("NEWDOMAIN");

Call the NCP::Domain constructor a third time. This call to
the NCP::Domain constructor specifies the name of the Network
Manager domain with the string "OLD". The NCP::Domain constructor
returns to $obsolete a new NCP::Domain object.
my $obsolete = new NCP::Domain("OLD");

Use the NCP::Domain object ($obsolete->) to directly invoke
the drop method to remove all references to the specified
domain (OLD) from the domainMgr table.

$obsolete->drop();

Use the NCP::Domain object ($domain->) created in the first
call to the NCP::Domain constructor to directly invoke the id
method to retrieve the domain manager ID for this domain.

$domain->id();

Use the NCP::Domain object ($domain->) created in the first
call to the NCP::Domain constructor to directly invoke the name
method to retrieve the domain name for this domain.

$domain->name();

See Also
v “NCP::Domain Constructor”
v “clone” on page 164
v “create” on page 164
v “drop” on page 166
v “id” on page 168
v “name” on page 169
v “setLogHandle” on page 171
v “setLogLevel” on page 172

NCP::Domain Constructor
The NCP::Domain constructor creates a blessed NCP::Domain object for the specified
Network Manager domain.

Constructor
new NCP::Domain($domainName)

new NCP::Domain($domainName, %dbOptionsHash)

new NCP::Domain(%dbOptionsHash)

Parameters

$domainName
Specifies the name of the Network Manager domain for which you want to

162 IBM Tivoli Network Manager IP Edition: Perl API Guide

create a blessed domain instance object. In this case, the domain name is
specified with plain text or plain text assigned to a variable. You can also
specify the domain name using the explicit hash key "domain".

%dbOptionsHash
Specifies the hash that contains the database login options. One of these
database login options is the domain name. More specifically, this hash
takes the same database login options as the DBI_Factory::createDbHandle
method.

Description

The NCP::Domain constructor creates a blessed NCP::Domain object for the specified
Network Manager domain. Use the NCP::Domain object (for example, $domain->) to
invoke the methods that the NCP::Domain module provides.

The NCP::Domain constructor provides a great deal of flexibility on how you obtain
the database login options for the %dbOptionsHash parameter. For example, you
can call the NCP::DBI_Factory::extractCmdLineOptions method to ensure that the
database login options specified on the command line are provided in a common
format. The return from the NCP::DBI_Factory::extractCmdLineOptions method (a
reference to a hash that contains the extracted database login options and values in
key/value format) is passed to the %dbOptionsHash parameter.

Notes

Connection to the NCIM topology database that resides in this domain will be
attempted only when required.

To ensure that the NCP::Domain constructor can print appropriate messages to a log
file, you must have previously specified a log handle (that is, a reference to a file
object) by calling the setLogHandle method. Otherwise, the constructor sends these
messages to STDOUT.

Example Usage

The following code fragment illustrates a typical call to the NCP::Domain
constructor:
my $domain = new NCP::Domain("NEWDOMAIN");

Returns

Upon completion, the NCP::Domain constructor returns a new NCP::Domain object.

See Also
v “createDbHandle” on page 137
v “extractCmdLineOptions” on page 145
v “setLogHandle” on page 171

Appendix B. NCP Modules Reference 163

clone
The clone method creates a new domain that is a copy of an existing domain.

Method Synopsis
clone($domain)

Parameters

$domain
Specifies the name of an existing Network Manager domain for which you
want to create a copy. You created an instance of this domain by calling the
NCP::Domain constructor.

Description

The clone method creates a new domain that is a copy of an existing domain.

Notes

The clone method assumes that the $NCHOMEenvironment variable is set.
Otherwise, the clone method will not be able to copy the domain-specific
configuration files from the existing domain.

To ensure that the clone method can print appropriate error and other messages to
a log file, you must have previously specified a log handle (that is, a reference to a
file object) by calling the setLogHandle method. Otherwise, the method sends these
messages to STDOUT.

Returns

Upon completion, the clone method does not return any data.

See Also
v “NCP::Domain Constructor” on page 162
v “setLogHandle” on page 171

create
The create method creates an entry in the domainMgr table for the specified
domain if one does not already exist.

Method Synopsis
create()

Parameters

None

Description

The create method creates an entry in the domainMgr table for the specified
domain if one does not already exist. In addition, the create method creates an
entry in the domainSummary table for the specified domain if one does not
already exist. The domain name was specified in a previous call to the NCP::Domain
constructor.

164 IBM Tivoli Network Manager IP Edition: Perl API Guide

The domainMgr table stores data on network domains. For the specified domain,
the create method inserts a row in the domainMgr table with values for the
following table columns:
v domainName
v creationTime
v lastUpdated
v managerName
v webtopDataSource
v domainHost
v domainPort
v description

The domainMgr table contains an auto-increment column called domainMgrId,
which the create method uses to automatically increment the field.

The domainSummary table stores statistical data on the specified domain. For the
specified domain, the create method inserts a row in the domainSummary table
with values for the following table columns:
v domainMgrId
v createTime
v changeTime

The create method logs appropriate error messages to a log file or STDOUT if it fails
to insert an entry in the domainMgr table or the domainSummary table for the
specified domain.

The create method permanently commits the insert row operations in the
domainMgr and domainSummary tables to the database. Thus, it is not necessary
for the application to call the Perl DBI module commit method.

Notes

You invoke the create method on the NCP::Domain object returned in a previous
call to the NCP::Domain constructor. For example:
.
.
.
my $domain = new NCP::Domain($scriptOptions->{domain}, %$ncimArgs);
.
.
.
$domain->create();

To ensure that the create method can print appropriate error and other messages
to a log file, you must have previously specified a log handle (that is, a reference
to a file object) by calling the setLogHandle method. Otherwise, the method sends
these messages to STDOUT.

Network Manager applications often use the NCP::Domain module methods in
conjunction with the methods that the NCP::DBI_Factory module provides.

Appendix B. NCP Modules Reference 165

Example Usage

The following code shows a call to the NCP::Domain constructor, which returns the
newly created NCP::Domain object to the $domain variable. The name of the domain
is specified in $domainName in the call to the NCP::Domain constructor. The
%$ncimArgs hash reference contains the command line arguments (database login
options and values) in key/value format returned in a previous call to the
NCP::DBI_Factory::extractcmdLineOptions method.
.
.
.
my $domain = new NCP::Domain($domainName, %$ncimArgs);
.
.
.

The following code shows that the create method is invoked on the NCP::Domain
object ($domain->). The create method creates entries in the domainMgr and
domainSummary tables for the domain specified in $domainName:
.
.
.
$domain->create();
.
.
.

Returns

Upon completion, the create method does not return any data.

See Also
v “NCP::Domain Constructor” on page 162
v “setLogHandle” on page 171
v “NCP::DBI_Factory module reference” on page 135

drop
The drop method removes all references to the specified domain from the
domainMgr table.

Method Synopsis
drop($domain)

Parameters

$domain
Specifies the name of an existing Network Manager domain for which you
want to delete its associated entry from the domainMgr table. You created
an instance of this domain by calling the NCP::Domain constructor.

Description

The drop method removes all references to the specified domain from the
domainMgr table. This action effectively deletes any entities in the NCIM topology
database for the specified domain. The drop method does not remove any
configuration files associated with the specified domain.

166 IBM Tivoli Network Manager IP Edition: Perl API Guide

Notes

You invoke the drop method on the NCP::Domain object returned in a previous call
to the NCP::Domain constructor. For example:
.
.
.
my $domain = new NCP::Domain($scriptOptions->{domain}, %$ncimArgs);
.
.
.
$domain->drop(%$scriptOptions);

To ensure that the drop method can print appropriate error and other messages to
a log file, you must have previously specified a log handle (that is, a reference to a
file object) by calling the setLogHandle method. Otherwise, the method sends these
messages to STDOUT.

Network Manager applications often use the NCP::Domain module methods in
conjunction with the methods that the NCP::DBI_Factory module provides.

Example Usage

The example that illustrates a call to the drop method is divided into the following
sections:
v Create a new NCP::Domain object
v Call drop to remove all references to the specified domain

Create a new NCP::Domain object

The following code shows a call to the NCP::Domain constructor, which returns a
new NCP::Domain object to the $domain variable. The name of the domain is
specified in $domainName in the call to the NCP::Domain constructor:
.
.
.
my $domain = new NCP::Domain($domainName, %$ncimArgs);
.
.
.

Call drop to remove all references to the specified domain

The following code shows an invocation of the drop method on the NCP::Domain
object ($domain->):
.
.
.
$domain->drop(%$scriptOptions);
.
.
.

Returns

Upon completion, the drop method does not return any data.

Appendix B. NCP Modules Reference 167

See Also
v “NCP::Domain Constructor” on page 162
v “setLogHandle” on page 171
v “NCP::DBI_Factory module reference” on page 135

id
The id method retrieves the domainMgrId from the domainMgr table in the NCIM
topology database that resides in the specified domain.

Method Synopsis
id()

Parameters

None

Description

The id method retrieves the domainMgrId from the domainMgr table in the NCIM
topology database that resides in this domain.

Notes

You invoke the id method on the NCP::Domain object returned in a previous call to
the NCP::Domain constructor. For example:
.
.
.
my $domain = new NCP::Domain($domainName, %$ncimArgs);
.
.
.
my $domainMgrId = $domain->id();
.
.
.

To ensure that the id method can print appropriate error and other messages to a
log file, you must have previously specified a log handle (that is, a reference to a
file object) by calling the setLogHandle method. Otherwise, the method sends these
messages to STDOUT.

Example Usage

The example that illustrates a call to the id method is divided into the following
sections:
v Create a new NCP::Domain object
v Call id to return the domainMgrId

Create a new NCP::Domain object

The following code shows a call to the NCP::Domain constructor, which returns a
new NCP::Domain object to the $domain variable. The name of the domain is
specified in $domainName in the call to the NCP::Domain constructor:

168 IBM Tivoli Network Manager IP Edition: Perl API Guide

.

.

.
my $domain = new NCP::Domain($domainName, %$ncimArgs);
.
.
.

Call id to return the name of the domain

The following code shows an invocation of the id method on the NCP::Domain
object ($domain->). The id method returns the domainMgrId to the $domainMgrId
variable. Note that $domainMgrId is used in the call to the dropPollPolicies
method.
.
.
.
my $domainMgrId = $domain->id();
.
.
.

dropPollPolicies($ncmonitor, $domainMgrId);
.
.
.

Returns

Upon completion, the id method returns the domainMgrId.

See Also
v “NCP::Domain Constructor” on page 162
v “setLogHandle” on page 171

name
The name method returns the name of the domain.

Method Synopsis
name()

Parameters

None

Description

The name method returns the name of the domain.

Notes

You invoke the name method on the NCP::Domain object returned in a previous call
to the NCP::Domain constructor. For example:
.
.
.
my $domain = new NCP::Domain($domainName, %$ncimArgs);
.

Appendix B. NCP Modules Reference 169

.

.
my $domainName = $domain->name();
.
.
.

Example Usage

The example that illustrates a call to the name method is divided into the following
sections:
v Create a new NCP::Domain object
v Call name to return the name of the domain

Create a new NCP::Domain object

The following code shows a call to the NCP::Domain constructor, which returns a
new NCP::Domain object to the $domain variable. The name of the domain is
specified in $domainName in the call to the NCP::Domain constructor:
.
.
.
my $domain = new NCP::Domain($domainName, %$ncimArgs);
.
.
.

Call name to return the name of the domain

The following code shows an invocation of the name method on the NCP::Domain
object ($domain->). The name method returns the name of the domain to the
$domainName variable. Note that $domainName is used in the call to the
createDbHandle method.
.
.
.
my $domainName = $domain->name();
.
.
.

my $ncmonitor = NCP::DBI_Factory::createDbHandle(domain => $domainName,
dbid => "NCMONITOR",
%$ncmonitorArgs);

.

.

.

Returns

Upon completion, the name method returns the name of the domain.

See Also
v “NCP::Domain Constructor” on page 162
v “createDbHandle” on page 137

170 IBM Tivoli Network Manager IP Edition: Perl API Guide

setLogHandle
The setLogHandle method passes in a log handle associated with an opened file to
the NCP::Domain module methods. These methods can then write messages to this
opened file.

Method Synopsis
setLogHandle($filehandle)

Parameters

$filehandle
Specifies a reference to a file handle (for example, IO::File) that points to
an opened file to which messages can be written.

Description

The setLogHandle method passes in the log handle specified in the $filehandle
parameter to an internal utility method called by the NCP::Domain module
methods. This handle is associated with an opened file to which this internal
utility method writes messages. In effect, this opened file serves as a log file that
contains critical, informational, and warning type messages associated with the
execution of the NCP::Domain module methods.

If you do not call the setLogHandle method, the internal utility method writes
these messages to STDOUT.

Notes

You invoke the setLogHandle method on the NCP::Domain object returned in a
previous call to the NCP::Domain constructor. For example:
.
.
.
my $domain = new NCP::Domain($domainName, %$ncimArgs);
.
.
.
$domain->setLogHandle($logFile);
.
.
.

Example Usage

The example that illustrates a call to the setLogHandle method is divided into the
following sections:
v Create a new NCP::Domain object
v Call setLogHandle to log messages to a specified open file

Create a new NCP::Domain object

The following code shows a call to the NCP::Domain constructor, which returns a
new NCP::Domain object to the $domain variable. The name of the domain is
specified in $domainName in the call to the NCP::Domain constructor:
.
.
.

Appendix B. NCP Modules Reference 171

my $domain = new NCP::Domain($domainName, %$ncimArgs);
.
.
.

Call setLogHandle to log messages to a specified open file

The following code shows an invocation of the setLogHandle method on the
NCP::Domain object ($domain->). The call to the setLogHandle method ensures that
any messages get logged to an open file (whose associated file handle is specified
in the $logFile local variable) rather than to STDOUT:
.
.
.
my $logName = "$logdir/checkDomain.$domainName.log";

my $logFile = new IO::File;
$logFile->open(">$logName") or die "Could not open log file $logName\n";
$domain->setLogHandle($logFile);

.

.

.

Returns

Upon completion, the setLogHandle method returns no data.

See Also
v “NCP::Domain Constructor” on page 162

setLogLevel
The setLogLevel method sets the log level for error and message reporting.

Method Synopsis
setLogLevel($loglevel)

Parameters

$loglevel
Specifies the log level to set. The following are the valid options described
in ascending order:
v debug — Specifies a log level in which all messages are logged.
v info — Specifies a log level in which informational, warning, and critical

messages are logged.
v warn — Specifies a log level in which warning and critical messages are

logged.
v critical — Specifies a log level in which only critical messages are

logged.

Description

The setLogLevel method sets the log level to the option specified in the $loglevel
parameter. The default is debug level. If set to a higher level, only messages with
an equal or higher level will be logged. For example, at level warn, messages of
level info and level debug will not be logged.

172 IBM Tivoli Network Manager IP Edition: Perl API Guide

By default, the NCP::Domain module methods log messages to STDOUT. If you
specify a log handle to the setLogHandle method, the NCP::Domain module
methods log messages to the opened file associated with this log handle.

The setLogLevel method logs an appropriate message (either to STDOUT or to an
opened file) if you specify an invalid log level.

Notes

You invoke the setLogLevel method on the NCP::Domain object returned in a
previous call to the NCP::Domain constructor. For example:
.
.
.
my $domain = new NCP::Domain($domainName, %$ncimArgs);
.
.
.
$domain->setLogLevel("warn");
.
.
.

Example Usage

The example that illustrates a call to the setLogLevel method is divided into the
following sections:
v Create a new NCP::Domain object
v Call setLogHandle to log messages to a specified open file
v Call setLogLevel to set the log level

Create a new NCP::Domain object

The following code shows a call to the NCP::Domain constructor, which returns a
new NCP::Domain object to the $domain variable. The name of the domain is
specified in $domainName in the call to the NCP::Domain constructor:
.
.
.
my $domain = new NCP::Domain($domainName, %$ncimArgs);
.
.
.

Call setLogHandle to log messages to a specified open file

The following code shows an invocation of the setLogHandle method on the
NCP::Domain object ($domain->). The call to the setLogHandle method ensures that
any messages get logged to an open file (stored in the $logFile local variable) rather
than to STDOUT:
.
.
.
my $logName = "$logdir/checkDomain.$domainName.log";

my $logFile = new IO::File;
$logFile->open(">$logName") or die "Could not open log file $logName\n";

Appendix B. NCP Modules Reference 173

$domain->setLogHandle($logFile);
.
.
.

Call setLogLevel to set the log level

The following code shows that the setLogLevel method is invoked on the
NCP::Domain object ($domain->). The call to setLogLevel specifies the logging of
messages at the warn and critical levels.
.
.
.
$domain->setLogLevel("warn");
.
.
.

Returns

Upon completion, the setLogLevel method returns no data.

See Also
v “NCP::Domain Constructor” on page 162
v “setLogHandle” on page 171

174 IBM Tivoli Network Manager IP Edition: Perl API Guide

Appendix C. Network Manager glossary

Use this information to understand terminology relevant to the Network Manager
product.

The following list provides explanations for Network Manager terminology.

AOC files
Files used by the Active Object Class manager, ncp_class to classify
network devices following a discovery. Device classification is defined in
AOC files by using a set of filters on the object ID and other device MIB
parameters.

active object class (AOC)
An element in the predefined hierarchical topology of network devices
used by the Active Object Class manager, ncp_class, to classify discovered
devices following a discovery.

agent See, discovery agent.

class hierarchy
Predefined hierarchical topology of network devices used by the Active
Object Class manager, ncp_class, to classify discovered devices following a
discovery.

configuration files
Each Network Manager process has one or more configuration files used to
control process behaviour by setting values in the process databases.
Configuration files can also be made domain-specific.

discovery agent
Piece of code that runs during a discovery and retrieves detailed
information from discovered devices.

Discovery Configuration GUI
GUI used to configure discovery parameters.

Discovery engine (ncp_disco)
Network Manager process that performs network discovery.

discovery phase
A network discovery is divided into four phases: Interrogating devices,
Resolving addresses, Downloading connections, and Correlating
connectivity.

discovery seed
One or more devices from which the discovery starts.

discovery scope
The boundaries of a discovery, expressed as one or more subnets and
netmasks.

Discovery Status GUI
GUI used to launch and monitor a running discovery.

discovery stitcher
Piece of code used during the discovery process. There are various
discovery stitchers, and they can be grouped into two types: data collection
stitchers, which transfer data between databases during the data collection

© Copyright IBM Corp. 2006, 2012 175

phases of a discovery, and data processing stitchers, which build the
network topology during the data processing phase.

domain
See, network domain.

entity A topology database concept. All devices and device components
discovered by Network Manager are entities. Also device collections such
as VPNs and VLANs, as well as pieces of topology that form a complex
connection, are entities.

event enrichment
The process of adding topology information to the event.

Event Gateway (ncp_g_event)
Network Manager process that performs event enrichment.

Event Gateway stitcher
Stitchers that perform topology lookup as part of the event enrichment
process.

failover
In your Network Manager environment, a failover architecture can be used
to configure your system for high availability, minimizing the impact of
computer or network failure.

Failover plug-in
Receives Network Manager health check events from the Event Gateway
and passes these events to the Virtual Domain process, which decides
whether or not to initiate failover based on the event.

Fault Finding View
Composite GUI view consisting of an Active Event List (AEL) portlet
above and a Network Hop View portlet below. Use the Fault Finding View
to monitor network events.

full discovery
A discovery run with a large scope, intended to discover all of the network
devices that you want to manage. Full discoveries are usually just called
discoveries, unless they are being contrasted with partial discoveries. See
also, partial discovery.

message broker
Component that manages communication between Network Manager
processes. The message broker used byNetwork Manager is called Really
Small Message Broker. To ensure correct operation of Network Manager,
Really Small Message Broker must be running at all times.

NCIM database
Relational database that stores topology data, as well as administrative
data such as data associated with poll policies and definitions, and
performance data from devices.

ncp_disco
See, Discovery engine.

ncp_g_event
See, Event Gateway.

ncp_model
See, Topology manager.

176 IBM Tivoli Network Manager IP Edition: Perl API Guide

ncp_poller
See, Polling engine.

network domain
A collection of network entities to be discovered and managed. A single
Network Manager installation can manage multiple network domains.

Network Health View
Composite GUI view consisting of a Network Views portlet above and an
Active Event List (AEL) portlet below. Use the Network Health View to
display events on network devices.

Network Hop View
Network visualization GUI. Use the Network Hop View to search the
network for a specific device and display a specified network device. You
can also use the Network Hop View as a starting point for network
troubleshooting. Formerly known as the Hop View.

Network Polling GUI
Administrator GUI. Enables definition of poll policies and poll definitions.

Network Views
Network visualization GUI that shows hierarchically organized views of a
discovered network. Use the Network Views to view the results of a
discovery and to troubleshoot network problems.

OQL databases
Network Manager processes store configuration, management and
operational information in OQL databases.

OQL language
Version of the Structured Query Language (SQL) that has been designed
for use in Network Manager. Network Manager processes create and
interact with their databases using OQL.

partial discovery
A subsequent rediscovery of a section of the previously discovered
network. The section of the network is usually defined using a discovery
scope consisting of either an address range, a single device, or a group of
devices. A partial discovery relies on the results of the last full discovery,
and can only be run if the Discovery engine, ncp_disco, has not been
stopped since the last full discovery. See also, full discovery.

Path Views
Network visualization GUI that displays devices and links that make up a
network path between two selected devices. Create new path views or
change existing path views to help network operators visualize network
paths.

performance data
Performance data can be gathered using performance reports. These
reports allow you to view any historical performance data that has been
collected by the monitoring system for diagnostic purposes.

Polling engine (ncp_poller)
Network Manager process that polls target devices and interfaces. The
Polling engine also collects performance data from polled devices.

poll definition
Defines how to poll a network device or interface and further filter the
target devices or interfaces.

Appendix C. Network Manager glossary 177

poll policy
Defines which devices to poll. Also defines other attributes of a poll such
as poll frequency.

Probe for Tivoli Netcool/OMNIbus (nco_p_ncpmonitor)
Acquires and processes the events that are generated by Network Manager
polls and processes, and forwards these events to the ObjectServer.

RCA plug-in
Based on data in the event and based on the discovered topology, attempts
to identify events that are caused by or cause other events using rules
coded in RCA stitchers.

RCA stitcher
Stitchers that process a trigger event as it passes through the RCA plug-in.

root-cause analysis (RCA)
The process of determining the root cause of one or more device alerts.

SNMP MIB Browser
GUI that retrieves MIB variable information from network devices to
support diagnosis of network problems.

SNMP MIB Grapher
GUI that displays a real-time graph of MIB variables for a device and usse
the graph for fault analysis and resolution of network problems.

stitcher
Code used in the following processes: discovery, event enrichment, and
root-cause analysis. See also, discovery stitcher, Event Gateway stitcher,
and RCA stitcher.

Structure Browser
GUI that enables you to investigate the health of device components in
order to isolate faults within a network device.

Topology Manager (ncp_model)
Stores the topology data following a discovery and sends the topology
data to the NCIM topology database where it can be queried using SQL.

WebTools
Specialized data retrieval tools that retrieve data from network devices and
can be launched from the network visualization GUIs, Network Views and
Network Hop View, or by specifying a URL in a web browser.

178 IBM Tivoli Network Manager IP Edition: Perl API Guide

Notices

This information applies to the PDF documentation set for IBM Tivoli Network
Manager IP Edition 3.9.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2006, 2012 179

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
958/NH04
IBM Centre, St Leonards
601 Pacific Hwy
St Leonards, NSW, 2069
Australia
IBM Corporation
896471/H128B
76 Upper Ground
London
SE1 9PZ
United Kingdom
IBM Corporation
JBF1/SOM1 294
Route 100
Somers, NY, 10589-0100
United States of America

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

180 IBM Tivoli Network Manager IP Edition: Perl API Guide

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Trademarks
The terms in Table 2 are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

Table 2. IBM trademarks

AIX iSeries RDN

ClearQuest Lotus SecureWay

Cognos Netcool solidDB

Current NetView System z

DB2 Notes Tivoli

developerWorks OMEGAMON WebSphere

Enterprise
Storage Server

PowerVM z/OS

IBM PR/SM z/VM

Informix pSeries zSeries

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Java™ and all Java-based trademarks and logos are trademarks or
registered trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Notices 181

182 IBM Tivoli Network Manager IP Edition: Perl API Guide

Index

A
accessibility ix
audience v

C
constructors

NCP::Domain 162
RIV::Agent 73
RIV::App 95
RIV::OQL 97
RIV::Param 106
RIV::Record 113
RIV::RecordCache 119
RIV::SnmpAccess 123

conventions, typeface x

E
education

see Tivoli technical training x
environment variables, notation x

F
functions

RIV::GetInput 62
RIV::GetResult 63
RIV::InputFilter 65
RIV::InputQueueLength 66
RIV::IsIpNotLoopBackOrMulticast 66
RIV::IsIpv4Valid 68
RIV::IsIpv6Valid 68
RIV::IsIpValid 67
RIV::ReadDir 69
RIV::RivDebug 70
RIV::RivError 70
RIV::RivMessage 71

G
glossary 175

M
manuals vi
methods

AddLocalNeighbour 114
AddLocalNeighbourTag 115
AddRemoteNeighbour 115
AddRemoteNeighbourTag 116
ASN1ToOid 123, 132
AsyncSnmpGet 124
AsyncSnmpGetBulk 125
AsyncSnmpGetNext 127
CacheRecord 120
clone 164
create 164

methods (continued)
CreateDB 98
createDbHandle 137
CreateTable 98
Delete 99
describeTable 142
DomainName 110, 111
drop 166
execute_insert_auto_inc 144
extractCmdLineOptions 145
extractHashRefOptions 147
GetDNSAllIpAddrs 74
GetDNSAllNames 74
GetDNSFirstIpAddr 75
GetDNSFirstName 76
GetIpArp 77
GetLocalNeighbours 117
GetMacArp 77
GetMibHash 128
GetMultTelnet 78
GetPingIP 79
GetPingList 80
GetPingSubnet 80
GetRecord 120
GetRecords 121
GetRemoteNeighbours 117
GetTelnet 81
GetTelnetCols 82
GetTraceRoute 83
id 168
Insert 100
insert_auto_inc_row 149
insert_row 150
LockThreads 83
name 169
OidToASN1 129
PingIP 84
PingList 85
PingSubnet 85
prepare_insert_auto_inc 152
Print 102, 118
schema 153
Select 102
Send 104
SendNeToDisco 86
SendNEToNextPhase 87
setLogHandle 154, 171
setLogLevel 155, 172
SnmpGet 91, 129
SnmpGetBulk 92, 130
SnmpGetNext 93, 131
tables 156
timeStamp 158
toUpper 159
UnLockThreads 94
Update 104
Usage 112

module synopsis
NCP::DBI::Factory 135
NCP::Domain 161
RIV 53

module synopsis (continued)
RIV::Agent 72
RIV::App 94
RIV::OQL 96
RIV::Param 106
RIV::Record 113
RIV::RecordCache 118
RIV::SnmpAccess 122

N
Network Manager glossary 175

O
Object Query Language 35
online publications vi
OQL 35
ordering publications vi

P
publications vi

S
support information x

T
Tivoli software information center vi
Tivoli technical training x
training, Tivoli technical x
typeface conventions x

V
variables

DebugLevel 56, 58
MaxAsyncConcurrrent 128

variables, notation for x
virtual methods

AddSubject 54
AddTimer 55
DecryptPassword 56
EncryptPassword 57
Latency 57
PostInput 59
PublishMessage 59, 60
RetryLimit 61

W
What this publication contains v

© Copyright IBM Corp. 2006, 2012 183

184 IBM Tivoli Network Manager IP Edition: Perl API Guide

����

Printed in the Republic of Ireland

SC27-2769-01

	Contents
	About this publication
	Intended audience
	What this publication contains
	Publications
	Accessibility
	Tivoli® technical training
	Support information
	Conventions used in this publication

	Chapter 1. Overview of the Perl API
	RIV module overview
	RIV::Agent module overview
	RIV::App module overview
	RIV::OQL module overview
	RIV::Param module overview
	RIV::Record module overview
	RIV::RecordCache module overview
	RIV::SnmpAccess module overview

	NCP modules overview
	NCP::DBI_Factory module overview
	NCP::Domain module overview

	Synchronization with message broker
	Installing the Perl API
	Perl builds
	Obtaining SNMP information from a network device
	Perl API modules reference page syntax

	Chapter 2. Writing discovery agents
	Before you write a discovery agent
	Writing a discovery agent
	Example discovery agents
	Discovery agent skeleton
	Network entity discovery agent example
	IP routing discovery agent example

	Prototype agent definition file template
	Using threads in discovery agents
	Discovery agent threads example
	Default number of threads

	Chapter 3. Accessing component databases
	Object Query Language
	Differences between OQL and Structured Query Language
	Actions that can be performed on component databases
	Example Perl scripts that operate on component databases
	The oql_example.pl example script
	OQL example script

	Chapter 4. Performing SNMP queries
	Using get methods to obtain SNMP information from a device
	Making synchronous and asynchronous SNMP get requests
	Example SNMP GET access script
	Declare Perl API modules and variables
	Create and initialize a RIV::Param object
	Create and initialize a RIV::App object
	Create and initialize RIV::SnmpAccess object
	Check the device IP address and node name
	Determine which SNMP GET requests to run
	Perform asynchronous SNMP GET requests
	Perform synchronous SNMP GET requests
	Print the SNMP varops

	Chapter 5. Writing and integrating Perl applications with third-party products
	Listener applications
	Example Listener script
	Declare Perl API modules and variables for Listener
	Create and initialize a RIV::Param object for Listener
	Create and initialize a RIV::App object for Listener
	Bind the RIV::App object to the message broker subject for Listener
	Write database records to a log file
	Send database records to different applications

	Appendix A. RIV Modules Reference
	RIV module reference
	RIV module synopsis
	AddSubject
	AddTimer
	DebugLevel
	DecryptPassword
	EncryptPassword
	Latency
	MessageLevel
	PostInput
	PublishMessage
	PublishMessage
	RetryLimit
	RIV::GetInput
	RIV::GetResult
	RIV::InputFilter
	RIV::InputQueueLength
	RIV::IsIpNotLoopBackOrMulticast
	RIV::IsIpValid
	RIV::IsIpv4Valid
	RIV::IsIpv6Valid
	RIV::ReadDir
	RIV::RivDebug
	RIV::RivError
	RIV::RivMessage

	RIV::Agent module reference
	RIV::Agent module synopsis
	RIV::Agent Constructor
	GetDNSAllIpAddrs
	GetDNSAllNames
	GetDNSFirstIpAddr
	GetDNSFirstName
	GetIpArp
	GetMacArp
	GetMultTelnet
	GetPingIP
	GetPingList
	GetPingSubnet
	GetTelnet
	GetTelnetCols
	GetTraceRoute
	LockThreads
	PingIP
	PingList
	PingSubnet
	SendNEToDisco
	SendNEToNextPhase
	SnmpGet
	SnmpGetBulk
	SnmpGetNext
	UnLockThreads

	RIV::App module reference
	RIV::App module synopsis
	RIV::App Constructor

	RIV::OQL module reference
	RIV::OQL module synopsis
	RIV::OQL Constructor
	CreateDB
	CreateTable
	Delete
	Insert
	Print
	Select
	Send
	Update

	RIV::Param module reference
	RIV::Param module synopsis
	RIV::Param Constructor
	CommandName
	DomainName
	Usage

	RIV::Record module reference
	RIV::Record module synopsis
	RIV::Record Constructor
	AddLocalNeighbour
	AddLocalNeighbourTag
	AddRemoteNeighbour
	AddRemoteNeighbourTag
	GetLocalNeighbours
	GetRemoteNeighbours
	Print

	RIV::RecordCache module reference
	RIV::RecordCache module synopsis
	RIV::RecordCache Constructor
	CacheRecord
	GetRecord
	GetRecords

	RIV::SnmpAccess module reference
	RIV::SnmpAccess module synopsis
	RIV::SnmpAccess Constructor
	ASN1ToOid
	AsyncSnmpGet
	AsyncSnmpGetBulk
	AsyncSnmpGetNext
	GetMibHash
	MaxAsyncConcurrent
	OidToASN1
	SnmpGet
	SnmpGetBulk
	SnmpGetNext
	SplitOidAndIndex

	Appendix B. NCP Modules Reference
	NCP::DBI_Factory module reference
	NCP::DBI_Factory module synopsis
	createDbHandle
	describeTable
	execute_insert_auto_inc
	extractCmdLineOptions
	extractHashRefOptions
	insert_auto_inc_row
	insert_row
	prepare_insert_auto_inc
	schema
	setLogHandle
	setLogLevel
	tables
	timeStamp
	toUpper

	NCP::Domain Reference
	NCP::Domain module synopsis
	NCP::Domain Constructor
	clone
	create
	drop
	id
	name
	setLogHandle
	setLogLevel

	Appendix C. Network Manager glossary
	Notices
	Trademarks

	Index
	A
	C
	E
	F
	G
	M
	N
	O
	P
	S
	T
	V
	W

